Main Content




w = kaiser(L,beta) returns an L-point Kaiser window with shape factor beta.


collapse all

Create a 200-point Kaiser window with a beta of 2.5. Display the result using wvtool.

w = kaiser(200,2.5);

Figure Window Visualization Tool contains 2 axes and other objects of type uimenu, uitoolbar, uipanel. Axes 1 with title Time domain contains an object of type line. Axes 2 with title Frequency domain contains an object of type line.

Input Arguments

collapse all

Window length, specified as a positive integer.

Data Types: single | double

Shape factor, specified as a positive real scalar. The parameter beta affects the sidelobe attenuation of the Fourier transform of the window.

Data Types: single | double

Output Arguments

collapse all

Kaiser window, returned as a column vector.


The coefficients of a Kaiser window are computed from the following equation:


where I0 is the zeroth-order modified Bessel function of the first kind. The length L = N + 1. kaiser(L,beta) is equivalent to


To obtain a Kaiser window that represents an FIR filter with sidelobe attenuation of α dB, use the following β.


Increasing β widens the mainlobe and decreases the amplitude of the sidelobes (i.e., increases the attenuation).


[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing Society, eds. Selected Papers in Digital Signal Processing. Vol. II. New York: IEEE Press, 1976.

[2] Kaiser, James F. "Nonrecursive Digital Filter Design Using the I0-Sinh Window Function." Proceedings of the 1974 IEEE® International Symposium on Circuits and Systems. April, 1974, pp. 20–23.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced before R2006a