This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Determine if digital filter has finite impulse response


flag = isfir(d)



flag = isfir(d) returns true if a digital filter, d, has a finite impulse response.


collapse all

Use designfilt to design FIR and IIR versions of a highpass filter. Specify a normalized stopband frequency of 0.3 and a normalized passband frequency of 0.6. Verify that each filter is of the correct class. Display the frequency responses of the filters.

fir = designfilt('highpassfir','StopbandFrequency',0.3,'PassbandFrequency',0.6);
iir = designfilt('highpassiir','StopbandFrequency',0.3,'PassbandFrequency',0.6);
isfirFIR = isfir(fir)
isfirFIR = logical

isiirFIR = isfir(iir)
isiirFIR = logical

fvt = fvtool(fir,iir);

Input Arguments

collapse all

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter based on frequency-response specifications.

Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5) specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments

collapse all

Filter class identification, returned as a logical scalar.

Introduced in R2014a