Documentation

### This is machine translation

Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Padé approximation of time delays

## Syntax

``[num,den] = padecoef(T,N)``

## Description

example

````[num,den] = padecoef(T,N)` returns the `N`th-order Padé Approximation of the continuous-time delay `exp(-T*s)` in transfer function form. The row vectors `num` and `den` contain the numerator and denominator coefficients in descending powers of `s`. Both are `N`th-order polynomials.```

## Examples

collapse all

Use `padecoef` to estimate the value of ${e}^{-2s}$ to second order.

`[a,b] = padecoef(2,2)`
```a = 1×3 1 -3 3 ```
```b = 1×3 1 3 3 ```

The result indicates that the second order approximation is

`$f\left(s\right)\approx \frac{a}{b}=\frac{{s}^{2}-3s+3}{{s}^{2}+3s+3}.$`

Compare the approximation to the actual value at $s=0.25$.

```f_approx = @(s) (s^2 - 3*s+3)/(s^2 + 3*s + 3); f_actual = @(s) exp(-2*s); abs(f_approx(0.25) - f_actual(0.25))```
```ans = 2.6717e-05 ```

## Input Arguments

collapse all

Time delay, specified as a real numeric scalar.

Data Types: `single` | `double`

Order of approximation, specified as a real numeric scalar.

Data Types: `single` | `double`

collapse all

The Laplace transform of a time delay of `T` seconds is `exp(-Ts)`. The `padecoef` function approximates this exponential transfer function by a rational transfer function using Padé approximation formulas.