histogram
Histogram plot
Description
Histograms are a type of bar plot that group data into bins. After you create
            a Histogram object, you can modify aspects of the histogram by
            changing its property values. This is particularly useful for quickly modifying the
            properties of the bins or changing the display.
Creation
Syntax
Description
histogram( creates a histogram
                        plot of X)X. The histogram function uses
                        an automatic binning algorithm that returns bins with a uniform width,
                        chosen to cover the range of elements in X and reveal the
                        underlying shape of the distribution. histogram
                        displays the bins as rectangular bars such that the height of each rectangle
                        indicates the number of elements in the bin.
histogram(
                        plots only a subset of categories in C,Categories)C.
histogram('Categories',
                        manually specifies categories and associated bin counts.
                            Categories,'BinCounts',counts)histogram plots the specified bin counts and does
                        not do any data binning.
histogram(___,
                        specifies additional parameters using one or more name-value arguments for
                        any of the previous syntaxes. For example, specify
                            Name,Value)Normalization to use a different type of
                        normalization. For a list of properties, see Histogram Properties.
histogram(
                        plots into the specified axes instead of into the current axes
                            (ax,___)gca). ax can precede any of the
                        input argument combinations in the previous syntaxes.
                        returns a h = histogram(___)Histogram object. Use this to inspect and
                        adjust the properties of the histogram. For a list of properties, see
                            Histogram Properties.
Input Arguments
Data to distribute among bins, specified as a vector, matrix, or
                            multidimensional array. histogram treats matrix and
                            multidimensional array data as a single column vector,
                                X(:), and plots a single histogram.
histogram ignores all NaN and
                                NaT values. Similarly,
                                histogram ignores Inf and
                                -Inf values, unless the bin edges explicitly
                            specify Inf or -Inf as a bin edge.
                            Although NaN, NaT,
                                Inf, and -Inf values are
                            typically not plotted, they are still included in normalization
                            calculations that include the total number of data elements, such as
                                'probability'.
Note
If X contains integers of type
                                    int64 or uint64 that are
                                larger than flintmax, then it is recommended that
                                you explicitly specify the histogram bin edges.
                                    histogram automatically bins the input data
                                using double precision, which lacks integer precision for numbers
                                greater than flintmax.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | datetime | duration
Categorical data, specified as a categorical array.
                                histogram does not plot undefined categorical
                            values. However, undefined categorical values are still included in
                            normalization calculations that include the total number of data
                            elements, such as 'probability'.
Data Types: categorical
Number of bins, specified as a positive integer. If you do not specify
                                nbins, then histogram
                            determines the number of bins from the values in
                            X.
If you specify nbins with
                                BinMethod, BinWidth or
                                BinEdges, histogram only honors the last parameter.
Example: histogram(X,15) creates a histogram with 15
                            bins.
Bin edges, specified as a vector. edges(1) is the
                            leading edge of the first bin, and edges(end) is the
                            trailing edge of the last bin.
Each bin includes the leading edge, but does not include the trailing edge, except for the last bin which includes both edges.
For datetime and duration data,
                                edges must be a datetime or
                                duration vector in monotonically increasing
                            order.
If you specify counts, then
                                edges must be a row vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | datetime | duration
Note
This option only applies to categorical histograms.
Categories included in histogram, specified as a cell array of character vectors, categorical
                        array, string array, or pattern scalar.
If you specify an input categorical array
C, then by default,histogramplots a bar for each category inC. In that case, useCategoriesto specify a unique subset of the categories instead.If you specify bin counts, then
Categoriesspecifies the associated category names for the histogram.
Example: h = histogram(C,{'Large','Small'}) plots
only the categorical data in the categories 'Large' and 'Small'.
Example: histogram(C,"Y" + wildcardPattern) plots data in the
                        categories whose names begin with the letter
                        Y.
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
18 3]) plots a histogram that has three categories with
the associated bin counts.
Example: h.Categories queries
the categories that are in histogram object h.
Data Types: cell | categorical | string | pattern
Bin counts, specified as a vector. Use this input to pass bin counts
                            to histogram when the bin counts calculation is
                            performed separately and you do not want histogram
                            to do any data binning.
The size of counts must be equal to the number of
                            bins.
For numeric histograms, the number of bins is
length(edges)-1.For categorical histograms, the number of bins is equal to the number of categories.
Example: histogram('BinEdges',-2:2,'BinCounts',[5 8 15
                                9])
Example: histogram('Categories',{'Yes','No','Maybe'},'BinCounts',[22
                                18 3])
Target axes, specified as an Axes object or a
                                PolarAxes object. If you do not specify the axes
                            and if the current axes are Cartesian axes, then the
                                histogram function uses the current axes
                                (gca). To plot into polar axes, specify the
                                PolarAxes object as the first input argument or
                            use the polarhistogram
                            function.
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
Example: histogram(X,BinWidth=5)
      Before R2021a, use commas to separate each name and value, and enclose 
      Name in quotes.
    
Example: histogram(X,'BinWidth',5)
Note
The properties listed here are only a subset. For a complete list, see Histogram Properties.
Bins
Width of bins, specified as a positive scalar. If you specify BinWidth,
            then histogram can use a maximum of 65,536 bins (or 216). If the specified bin width requires more bins, then
                    histogram uses a larger bin width
            corresponding to the maximum number of bins.
For
datetimeanddurationdata,BinWidthcan be a scalar duration or calendar duration.If you specify
BinWidthwithBinMethod,NumBins, orBinEdges,histogramonly honors the last parameter.This option does not apply to categorical data.
Example:  uses
            bins with a width of 5.histogram(X,'BinWidth',5)
Bin limits, specified as a two-element vector, [bmin,bmax]. The first
            element indicates the first bin edge. The second element indicates the last bin
            edge.
 This option computes using only the data that falls within the bin limits
            inclusively, X>=bmin & X<=bmax.
This option does not apply to categorical data.
Example: 
            bins only the values in histogram(X,'BinLimits',[1,10])X that are between 1 and
                10 inclusive.
Selection mode for bin limits, specified as 'auto' or 'manual'.
The default value is 'auto', so that the bin limits
automatically adjust to the data.
If you specify
BinLimitsorBinEdges, thenBinLimitsModeis set to'manual'. SpecifyBinLimitsModeas'auto'to rescale the bin limits to the data.This option does not apply to histograms of categorical data.
Binning algorithm, specified as one of the values in this table.
| 
                                                   Value  | 
                                                   Description  | 
|---|---|
| 
                                                   
  | 
                                                   The default   | 
| 
                                                   
  | 
                                                   Scott’s rule is optimal if the data is close
                                                  to being normally distributed. This rule is
                                                  appropriate for most other distributions, as well.
                                                  It uses a bin width of
                                                    | 
| 
                                                   
  | The Freedman-Diaconis rule is less sensitive to outliers in the data, and might be more
                suitable for data with heavy-tailed distributions. It uses a bin width of
                    | 
| 
                                                   
  | The integer rule is useful with integer data, as it creates a bin for each integer. It uses a bin width of 1 and places bin edges halfway between integers. To avoid accidentally creating too many bins, you can use this rule to create a limit of 65536 bins (216). If the data range is greater than 65536, then the integer rule uses wider bins instead. 
  | 
| 
                                                   
  | Sturges’ rule is popular due to its simplicity. It chooses the number of bins to be
                    | 
| 
                                                   
  | The Square Root rule is widely used in other software packages. It chooses the number
                of bins to be   | 
histogram adjusts the number of bins slightly so that
      the bin edges fall on "nice" numbers, rather than using these exact formulas.
For datetime or duration data, specify the binning
      algorithm as one of these units of time.
| Value | Description | Data Type | 
|---|---|---|
"second" | Each bin is 1 second.  | datetime and duration | 
"minute" | Each bin is 1 minute.  | datetime and duration | 
"hour" | Each bin is 1 hour.  | datetime and duration | 
"day" | Each bin is 1 calendar day. This value accounts for daylight saving time shifts.  | datetime and duration | 
"week" | Each bin is 1 calendar week. | datetime only | 
"month" | Each bin is 1 calendar month. | datetime only | 
"quarter" | Each bin is 1 calendar quarter. | datetime only | 
"year" | Each bin is 1 calendar year. This value accounts for leap days.  | datetime and duration | 
"decade" | Each bin is 1 decade (10 calendar years). | datetime only | 
"century" | Each bin is 1 century (100 calendar years). | datetime only | 
If you specify
BinMethodfordatetimeordurationdata, thenhistogramcan use a maximum of 65,536 bins (or 216). If the specified bin duration requires more bins, thenhistogramuses a larger bin width corresponding to the maximum number of bins.If you specify
BinLimits,NumBins,BinEdges, orBinWidth, thenBinMethodis set to'manual'.If you specify
BinMethodwithBinWidth,NumBinsorBinEdges,histogramonly honors the last parameter.This option does not apply to categorical data.
Example:  centers the bins on
      integers.histogram(X,'BinMethod','integers')
Categories
Category display order, specified as 'data', 'ascend',
            or 'descend'.
'data'— Use the category order in the input dataC.'ascend'— Display the histogram with increasing bar heights.'descend'— Display the histogram with decreasing bar heights.
This option only works with categorical data.
Number of categories to display, specified as a scalar. You
can change the ordering of categories displayed in the histogram using
the 'DisplayOrder' option.
This option only works with categorical data.
Toggle summary display of data belonging to undisplayed categories, specified as
                'on' or 'off', or as numeric or logical
                1 (true) or 0
                (false). A value of 'on' is equivalent to
                true, and 'off' is equivalent to
                false. Thus, you can use the value of this property as a logical
            value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
Set this option to
'on'to display an additional bar in the histogram with the name'Others'. This extra bar counts all elements that do not belong to categories displayed in the histogram.You can change the number of categories displayed in the histogram, as well as their order, using the
'NumDisplayBins'and'DisplayOrder'options.This option only works with categorical data.
Data
Type of normalization, specified as one of the values in this table. For each bin
                i:
is the bin value.
is the number of elements in the bin.
is the width of the bin.
is the number of elements in the input data. This value can be greater than the binned data if the data contains missing values, such as
NaN, or if some of the data lies outside the bin limits.
| Value | Bin Values | Notes | 
|---|---|---|
'count' (default) | 
 
  | 
                            
  | 
'probability' | 
 
  | 
                            
  | 
'percentage' | 
 
  | 
                            
  | 
'countdensity' | 
 
  | 
                            
  | 
'cumcount' | 
 
  | 
                            
  | 
'pdf' | 
 
  | 
                            
  | 
'cdf' | 
 
  | 
                            
  | 
Example:  bins the data using an estimate of
            the probability density function.histogram(X,'Normalization','pdf')
Color and Styling
Histogram display style, specified as either 'bar' or
                'stairs'.
'bar'— Display a histogram bar plot over each window ofA. This method is useful for reducing periodic trends in data.'stairs'— Display a stairstep plot, which displays the outline of the histogram without filling the interior.
Example: histogram(X,'DisplayStyle','stairs') plots
the outline of the histogram.
Orientation of bars, specified as 'vertical' or 'horizontal'.
Example: histogram(X,'Orientation','horizontal') creates
a histogram plot with horizontal bars.
Relative width of categorical bars, specified as a scalar value
in the range [0,1]. Use this property to control
the separation of categorical bars within the histogram. The default
value is 0.9, which means that the bar width is
90% of the space from the previous bar to the next bar, with 5% of
that space on each side.
If BarWidth is 1, then adjacent bars touch.
This option only works with categorical data.
Example: 0.5
Histogram bar color, specified as one of these values:
'none'— Bars are not filled.'auto'— Histogram bar color is chosen automatically (default).RGB triplet, hexadecimal color code, or color name — Bars are filled with the specified color.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example,[0.4 0.6 0.7].A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#) followed by three or six hexadecimal digits, which can range from0toF. The values are not case sensitive. Thus, the color codes"#FF8800","#ff8800","#F80", and"#f80"are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name Short Name RGB Triplet Hexadecimal Color Code Appearance "red""r"[1 0 0]"#FF0000"
"green""g"[0 1 0]"#00FF00"
"blue""b"[0 0 1]"#0000FF"
"cyan""c"[0 1 1]"#00FFFF"
"magenta""m"[1 0 1]"#FF00FF"
"yellow""y"[1 1 0]"#FFFF00"
"black""k"[0 0 0]"#000000"
"white""w"[1 1 1]"#FFFFFF"
This table lists the default color palettes for plots in the light and dark themes.
Palette Palette Colors "gem"— Light theme defaultBefore R2025a: Most plots use these colors by default.

"glow"— Dark theme default
You can get the RGB triplets and hexadecimal color codes for these palettes using the
orderedcolorsandrgb2hexfunctions. For example, get the RGB triplets for the"gem"palette and convert them to hexadecimal color codes.RGB = orderedcolors("gem"); H = rgb2hex(RGB);Before R2023b: Get the RGB triplets using
RGB = get(groot,"FactoryAxesColorOrder").Before R2024a: Get the hexadecimal color codes using
H = compose("#%02X%02X%02X",round(RGB*255)).
If you specify DisplayStyle as 'stairs', then
                    histogram does not use the
                FaceColor property.
Example:  creates a histogram plot with green
            bars.histogram(X,'FaceColor','g')
Histogram edge color, specified as one of these values:
'none'— Edges are not drawn.'auto'— Color of each edge is chosen automatically.RGB triplet, hexadecimal color code, or color name — Edges use the specified color.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example,[0.4 0.6 0.7].A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#) followed by three or six hexadecimal digits, which can range from0toF. The values are not case sensitive. Thus, the color codes"#FF8800","#ff8800","#F80", and"#f80"are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name Short Name RGB Triplet Hexadecimal Color Code Appearance "red""r"[1 0 0]"#FF0000"
"green""g"[0 1 0]"#00FF00"
"blue""b"[0 0 1]"#0000FF"
"cyan""c"[0 1 1]"#00FFFF"
"magenta""m"[1 0 1]"#FF00FF"
"yellow""y"[1 1 0]"#FFFF00"
"black""k"[0 0 0]"#000000"
"white""w"[1 1 1]"#FFFFFF"
This table lists the default color palettes for plots in the light and dark themes.
Palette Palette Colors "gem"— Light theme defaultBefore R2025a: Most plots use these colors by default.

"glow"— Dark theme default
You can get the RGB triplets and hexadecimal color codes for these palettes using the
orderedcolorsandrgb2hexfunctions. For example, get the RGB triplets for the"gem"palette and convert them to hexadecimal color codes.RGB = orderedcolors("gem"); H = rgb2hex(RGB);Before R2023b: Get the RGB triplets using
RGB = get(groot,"FactoryAxesColorOrder").Before R2024a: Get the hexadecimal color codes using
H = compose("#%02X%02X%02X",round(RGB*255)).
Example:  creates a histogram plot with red bar
            edges.histogram(X,'EdgeColor','r')
Transparency of histogram bars, specified as a scalar value in range
                [0,1]. histogram uses the
            same transparency for all the bars of the histogram. A value of 1
            means fully opaque and 0 means completely transparent
            (invisible).
Example:  creates a histogram plot with fully opaque
            bars.histogram(X,'FaceAlpha',1)
Transparency of histogram bar edges, specified as a scalar value
                                in the range [0,1]. A value of
                                    1 means fully opaque and 0
                                means completely transparent (invisible).
Example:  creates a histogram
                                plot with semi-transparent bar edges. histogram(X,'EdgeAlpha',0.5)
Line style, specified as one of the options listed in this table.
| Line Style | Description | Resulting Line | 
|---|---|---|
"-" | Solid line | 
 
  | 
"--" | Dashed line | 
 
  | 
":" | Dotted line | 
 
  | 
"-." | Dash-dotted line | 
 
  | 
"none" | No line | No line | 
Width of bar outlines, specified as a positive value in point units. One point equals 1/72 inch.
Example: 1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Output Arguments
Histogram, returned as an object. For more information, see Histogram Properties.
Properties
| Histogram Properties | Histogram appearance and behavior | 
Examples
Generate 10,000 random numbers and create a histogram. The histogram function automatically chooses an appropriate number of bins to cover the range of values in x and show the shape of the underlying distribution.
x = randn(10000,1); h = histogram(x)

h = 
  Histogram with properties:
             Data: [10000×1 double]
           Values: [2 2 1 6 7 17 29 57 86 133 193 271 331 421 540 613 730 748 776 806 824 721 623 503 446 326 234 191 132 78 65 33 26 11 8 5 5]
          NumBins: 37
         BinEdges: [-3.8000 -3.6000 -3.4000 -3.2000 -3 -2.8000 -2.6000 -2.4000 -2.2000 -2 -1.8000 -1.6000 -1.4000 -1.2000 -1 -0.8000 -0.6000 -0.4000 -0.2000 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 … ] (1×38 double)
         BinWidth: 0.2000
        BinLimits: [-3.8000 3.6000]
    Normalization: 'count'
        FaceColor: 'auto'
        EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
When you specify an output argument to the histogram function, it returns a histogram object. You can use this object to inspect the properties of the histogram, such as the number of bins or the width of the bins.
Find the number of histogram bins.
nbins = h.NumBins
nbins = 37
Plot a histogram of 1,000 random numbers sorted into 25 equally spaced bins.
x = randn(1000,1); nbins = 25; h = histogram(x,nbins)

h = 
  Histogram with properties:
             Data: [1000×1 double]
           Values: [1 3 0 6 14 19 31 54 74 80 92 122 104 115 88 80 38 32 21 9 5 5 5 0 2]
          NumBins: 25
         BinEdges: [-3.4000 -3.1200 -2.8400 -2.5600 -2.2800 -2 -1.7200 -1.4400 -1.1600 -0.8800 -0.6000 -0.3200 -0.0400 0.2400 0.5200 0.8000 1.0800 1.3600 1.6400 1.9200 2.2000 2.4800 2.7600 3.0400 3.3200 3.6000]
         BinWidth: 0.2800
        BinLimits: [-3.4000 3.6000]
    Normalization: 'count'
        FaceColor: 'auto'
        EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
Find the bin counts.
counts = h.Values
counts = 1×25
     1     3     0     6    14    19    31    54    74    80    92   122   104   115    88    80    38    32    21     9     5     5     5     0     2
Generate 1,000 random numbers and create a histogram.
X = randn(1000,1); h = histogram(X)

h = 
  Histogram with properties:
             Data: [1000×1 double]
           Values: [3 1 2 15 17 27 53 79 85 101 127 110 124 95 67 32 27 16 6 6 4 1 2]
          NumBins: 23
         BinEdges: [-3.3000 -3.0000 -2.7000 -2.4000 -2.1000 -1.8000 -1.5000 -1.2000 -0.9000 -0.6000 -0.3000 0 0.3000 0.6000 0.9000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3 3.3000 3.6000]
         BinWidth: 0.3000
        BinLimits: [-3.3000 3.6000]
    Normalization: 'count'
        FaceColor: 'auto'
        EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
Use the morebins function to coarsely adjust the number of bins.
Nbins = morebins(h); Nbins = morebins(h)

Nbins = 29
Adjust the bins at a fine grain level by explicitly setting the number of bins.
h.NumBins = 31;

Generate 1,000 random numbers and create a histogram. Specify the bin edges as a vector with wide bins on the edges of the histogram to capture the outliers that do not satisfy . The first vector element is the left edge of the first bin, and the last vector element is the right edge of the last bin.
x = randn(1000,1); edges = [-10 -2:0.25:2 10]; h = histogram(x,edges);

Specify the Normalization property as 'countdensity' to flatten out the bins containing the outliers. Now, the area of each bin (rather than the height) represents the frequency of observations in that interval.
h.Normalization = 'countdensity';
Create a categorical vector that represents votes. The categories in the vector are 'yes', 'no', or 'undecided'.
A = [0 0 1 1 1 0 0 0 0 NaN NaN 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1];
C = categorical(A,[1 0 NaN],{'yes','no','undecided'})C = 1×27 categorical
     no      no      yes      yes      yes      no      no      no      no      undecided      undecided      yes      no      no      no      yes      no      yes      no      yes      no      no      no      yes      yes      yes      yes 
Plot a categorical histogram of the votes, using a relative bar width of 0.5.
h = histogram(C,'BarWidth',0.5)
h = 
  Histogram with properties:
              Data: [no    no    yes    yes    yes    no    no    no    no    undecided    undecided    yes    no    no    no    yes    no    yes    no    yes    no    no    no    yes    yes    yes    yes]
            Values: [11 14 2]
    NumDisplayBins: 3
        Categories: {'yes'  'no'  'undecided'}
      DisplayOrder: 'data'
     Normalization: 'count'
      DisplayStyle: 'bar'
         FaceColor: 'auto'
         EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
Generate 1,000 random numbers and create a histogram using the 'probability' normalization.
x = randn(1000,1); h = histogram(x,'Normalization','probability')

h = 
  Histogram with properties:
             Data: [1000×1 double]
           Values: [0.0030 1.0000e-03 0.0020 0.0150 0.0170 0.0270 0.0530 0.0790 0.0850 0.1010 0.1270 0.1100 0.1240 0.0950 0.0670 0.0320 0.0270 0.0160 0.0060 0.0060 0.0040 1.0000e-03 0.0020]
          NumBins: 23
         BinEdges: [-3.3000 -3.0000 -2.7000 -2.4000 -2.1000 -1.8000 -1.5000 -1.2000 -0.9000 -0.6000 -0.3000 0 0.3000 0.6000 0.9000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3 3.3000 3.6000]
         BinWidth: 0.3000
        BinLimits: [-3.3000 3.6000]
    Normalization: 'probability'
        FaceColor: 'auto'
        EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
Compute the sum of the bar heights. With this normalization, the height of each bar is equal to the probability of selecting an observation within that bin interval, and the height of all of the bars sums to 1.
S = sum(h.Values)
S = 1
Generate 100,000 normally distributed random numbers. Use a standard deviation of 15 and a mean of 100.
x = 100 + 15*randn(1e5,1);
Plot a histogram of the random numbers. Scale and label the y-axis as percentages.
edges = 55:15:145; histogram(x,edges,Normalization="percentage") ytickformat("percentage")

Generate two vectors of random numbers and plot a histogram for each vector in the same figure.
x = randn(2000,1);
y = 1 + randn(5000,1);
h1 = histogram(x);
hold on
h2 = histogram(y);
Since the sample size and bin width of the histograms are different, it is difficult to compare them. Normalize the histograms so that all of the bar heights add to 1, and use a uniform bin width.
h1.Normalization = 'probability'; h1.BinWidth = 0.25; h2.Normalization = 'probability'; h2.BinWidth = 0.25;

Create a histogram and return the Histogram object. Use the Histogram object to modify properties of the histogram after creating it.
x = randn(1000,1); h = histogram(x)

h = 
  Histogram with properties:
             Data: [1000×1 double]
           Values: [2 2 15 15 33 47 62 90 100 114 121 107 93 85 43 37 17 9 5 1 2]
          NumBins: 21
         BinEdges: [-3.0000 -2.7000 -2.4000 -2.1000 -1.8000 -1.5000 -1.2000 -0.9000 -0.6000 -0.3000 0 0.3000 0.6000 0.9000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3.0000 3.3000]
         BinWidth: 0.3000
        BinLimits: [-3.0000 3.3000]
    Normalization: 'count'
        FaceColor: 'auto'
        EdgeColor: [0 0 0]
  Show all properties
Specify the edges of the bins with a vector.
h.BinEdges = [-3:3];

Normalize the bin counts so that the maximum bin count is 1.
h.BinCounts = h.BinCounts/max(h.BinCounts);

You can label each rectangular bar of a histogram with the number of elements it represents.
Create a histogram.
x = randn(1000,1); h = histogram(x,5);
Return the bin counts and the x-axis position of each bin center.
counts = h.Values; binEdges = h.BinEdges; binCenters = binEdges(1:end-1) + diff(binEdges)/2;
Add a label to each bar that displays the number of elements it represents.
text(binCenters,counts,num2str(counts'),HorizontalAlignment="center",VerticalAlignment="bottom")

Generate 5,000 normally distributed random numbers with a mean of 5 and a standard deviation of 2. Plot a histogram with Normalization set to 'pdf' to produce an estimation of the probability density function.
x = 2*randn(5000,1) + 5; histogram(x,'Normalization','pdf')

In this example, the underlying distribution for the normally distributed data is known. You can, however, use the 'pdf' histogram plot to determine the underlying probability distribution of the data by comparing it against a known probability density function.
The probability density function for a normal distribution with mean , standard deviation , and variance is
Overlay a plot of the probability density function for a normal distribution with a mean of 5 and a standard deviation of 2.
hold on y = -5:0.1:15; mu = 5; sigma = 2; f = exp(-(y-mu).^2./(2*sigma^2))./(sigma*sqrt(2*pi)); plot(y,f,'LineWidth',1.5)

Use the savefig function to save a histogram figure.
histogram(randn(10)); savefig('histogram.fig'); close gcf
Use openfig to load the histogram figure back into MATLAB®. openfig also returns a handle to the figure, h. 
h = openfig('histogram.fig');
Use the findobj function to locate the correct object handle from the figure handle. This allows you to continue manipulating the original histogram object used to generate the figure.
y = findobj(h,'type','histogram')
y = 
  Histogram with properties:
             Data: [10×10 double]
           Values: [2 17 28 32 16 3 2]
          NumBins: 7
         BinEdges: [-3 -2 -1 0 1 2 3 4]
         BinWidth: 1
        BinLimits: [-3 4]
    Normalization: 'count'
        FaceColor: 'auto'
        EdgeColor: [0.1294 0.1294 0.1294]
  Show all properties
Tips
Histogram plots created using
histogramhave a context menu in plot edit mode that enables interactive manipulations in the figure window. For example, you can use the context menu to interactively change the number of bins, align multiple histograms, or change the display order.When you add data tips to a histogram plot, they display the bin edges and bin count.
Extended Capabilities
This function supports tall arrays with the limitations:
Some input options are not supported. The allowed options are:
'BinWidth''BinLimits''Normalization''DisplayStyle''BinMethod'— The'auto'and'scott'bin methods are the same. The'fd'bin method is not supported.'EdgeAlpha''EdgeColor''FaceAlpha''FaceColor''LineStyle''LineWidth''Orientation'
Additionally, there is a cap on the maximum number of bars. The default maximum is 100.
The
morebinsandfewerbinsmethods are not supported.Editing properties of the histogram object that require recomputing the bins is not supported.
For more information, see Tall Arrays for Out-of-Memory Data.
The histogram function
    supports GPU array input with these usage notes and limitations:
This function accepts GPU arrays, but does not run on a GPU.
For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Usage notes and limitations:
This function operates on distributed arrays, but executes in the client MATLAB®.
For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox).
Version History
Introduced in R2014bYou can create histograms with percentages on the vertical axis by setting the
                    Normalization name-value argument to
                    'percentage'.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
 - Canada (English)
 - United States (English)
 
Europa
- Belgium (English)
 - Denmark (English)
 - Deutschland (Deutsch)
 - España (Español)
 - Finland (English)
 - France (Français)
 - Ireland (English)
 - Italia (Italiano)
 - Luxembourg (English)
 
- Netherlands (English)
 - Norway (English)
 - Österreich (Deutsch)
 - Portugal (English)
 - Sweden (English)
 - Switzerland
 - United Kingdom (English)