isbanded
Determine if matrix is within specific bandwidth
Description
Examples
Input Arguments
Tips
Use the
bandwidth
function to find the upper and lower bandwidths of a given matrix.Use
isbanded
to test for several different matrix structures by specifying appropriate upper and lower bandwidths. The table below lists some common tests.Lower Bandwidth
Upper Bandwidth
Function Call
Tests for
0
0
isbanded(A,0,0)
Diagonal matrix
1
1
isbanded(A,1,1)
Tridiagonal matrix
0
size(A,2)
isbanded(A,0,size(A,2))
Upper triangular matrix
size(A,1)
0
isbanded(A,size(A,1),0)
Lower triangular matrix
1
size(A,2)
isbanded(A,1,size(A,2))
Upper Hessenberg matrix
size(A,1)
1
isbanded(A,size(A,1),1)
Lower Hessenberg matrix
Extended Capabilities
Version History
Introduced in R2014a