squeezesegv2Layers
(Not recommended) Create SqueezeSegV2 segmentation network for organized lidar point cloud
Since R2020b
squeezesegv2Layers
is not recommended. Use the squeezesegv2Network
function (since R2024a) instead. For more information, see Version History.
Description
returns a SqueezeSegV2 layer graph lgraph
= squeezesegv2Layers(inputSize
,numClasses
)lgraph
for organized point clouds of
size inputSize
and the number of classes
numClasses
.
SqueezeSegV2 is a convolutional neural network that predicts pointwise labels for an organized lidar point cloud.
Use the squeezesegv2Layers
function to create the network
architecture for SqueezeSegV2. This function requires Deep Learning Toolbox™.
specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax. For example, lgraph
= squeezesegv2Layers(___,Name,Value
)'NumEncoderModules',4
sets
the number of encoders used to create the network to four.
Examples
Input Arguments
Output Arguments
More About
References
[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376–82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/ICRA.2019.8793495.
Extended Capabilities
Version History
Introduced in R2020bSee Also
Functions
squeezesegv2Network
|semanticseg
|trainNetwork
(Deep Learning Toolbox) |evaluateSemanticSegmentation