Reduced Order Modeling
Reduce computational complexity of models by creating accurate surrogates
Reduced order modeling is a technique for reducing the computational complexity or storage requirements of a model while preserving the expected fidelity within a satisfactory error. Working with a surrogate reduced order model can simplify analysis and control design.
Themen
Reduced Order Modeling Basics
- Reduced Order Modeling
Reduce computational complexity of models by creating accurate surrogates.
Data-Driven Methods
- Nonlinear ARX Model of SI Engine Torque Dynamics
This example describes modeling the nonlinear torque dynamics of a spark-ignition (SI) engine as a nonlinear ARX model. - Hammerstein-Wiener Model of SI Engine Torque Dynamics
This example describes modeling the nonlinear torque dynamics of a spark-ignition (SI) engine as a Hammerstein-Wiener model. - Neural State-Space Model of SI Engine Torque Dynamics
This example describes reduced order modeling (ROM) of the nonlinear torque dynamics of a spark-ignition (SI) engine using a neural state-space model.
Linearization-Based Methods
- LPV Approximation of Boost Converter Model (Simulink Control Design)
Approximate a nonlinear Simscape™ Electrical™ model using a linear parameter varying model. - Reduce Model Order Using the Model Reducer App (Control System Toolbox)
Interactively reduce model order while preserving important dynamics. - Simplifying Higher-Order Plant Models (Robust Control Toolbox)
Approximate high-order plant models by simpler, low-order models. - Specify Linearization for Model Components Using System Identification (Simulink Control Design)
You can use System Identification Toolbox™ software to identify a linear system for a model component that does not linearize well, and use the identified system to specify its linearization. - Reduced Order Modeling of a Cascade of Nonlinear Mass-Spring-Damper Systems Using Identified Linear Parameter Varying Model
Identify a linear parameter varying reduced order model of a cascade of nonlinear mass-spring-damper systems.