OptionEmbeddedFixedBond
OptionEmbeddedFixedBond instrument object
Description
Create and price a OptionEmbeddedFixedBond instrument
object for one or more Option Embedded Fixed Bond instruments using this
workflow:
Use
fininstrumentto create anOptionEmbeddedFixedBondinstrument object for one or more Option Embedded Fixed Bond instruments.use
finmodelto specify aHullWhite,BlackKarasinski,BlackDermanToy,BraceGatarekMusiela,SABRBraceGatarekMusiela,CoxIngersollRoss, orLinearGaussian2Fmodel for theOptionEmbeddedFixedBondinstrument object.Choose a pricing method.
When using a
HullWhite,BlackKarasinski,CoxIngersollRoss, orBlackDermanToymodel, usefinpricerto specify anIRTreepricing method for one or moreOptionEmbeddedFixedBondinstruments.When using a
HullWhite,BlackKarasinski,BraceGatarekMusiela,SABRBraceGatarekMusiela, orLinearGaussian2Fmodel, usefinpricerto specify anIRMonteCarlopricing method for one or moreOptionEmbeddedFixedBondinstruments.
Optionally, when using an
IRTreepricing method, you can compute the option adjusted spread (OAS) for one or moreOptionEmbeddedFixedBondinstruments usingoas.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods for an
OptionEmbeddedFixedBond instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'CouponRate',couponrate_value,'Maturity',maturity_date,'CallSchedule',call_schedule_value)OptionEmbeddedFixedBond object for one or more
Option Embedded Fixed Bond instruments by specifying
InstrumentType and sets the properties
for the required name-value pair arguments CouponRate,
Maturity, and
CallSchedule.
The OptionEmbeddedFixedBond instrument supports a
vanilla bond with embedded option, stepped coupon bond with embedded option,
and an amortizing bond with embedded option. For more information, see More About.
creates a OptionEmbeddedFixedBondObj = fininstrument(InstrumentType,'CouponRate',couponrate_value,'Maturity',maturity_date,'PutSchedule',put_schedule_value)OptionEmbeddedFixedBond object for one or more
Option Embedded Fixed Bond instruments by specifying
InstrumentType and sets the properties
for the required name-value pair arguments CouponRate,
Maturity, and
PutSchedule.
sets optional properties
using additional name-value pairs in addition to the required arguments in
the previous syntax. For example, OptionEmbeddedFixedBondObj = fininstrument(___,Name,Value)OptionEmbeddedFixedBondObj =
fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.034,'Maturity',datetime(2019,1,30),'Period',2,'Basis',1,'Principal',100,'CallSchedule',schedule,'CallExerciseStyle',"American",'Name',"optionembeddedfixedbond_instrument")
creates an OptionEmbeddedFixedBond instrument with an
American exercise and a call schedule. You can specify multiple name-value
pair arguments.
Input Arguments
Instrument type, specified as a string with the value of
"OptionEmbeddedFixedBond", a character vector
with the value of 'OptionEmbeddedFixedBond', an
NINST-by-1 string array with
values of "OptionEmbeddedFixedBond", or an
NINST-by-1 cell array of
character vectors with values of
'OptionEmbeddedFixedBond'.
Data Types: char | cell | string
Name-Value Arguments
Specify required
and optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: OptionEmbeddedFixedBondObj =
fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.034,'Maturity',datetime(2019,1,30),'Period',2,'Basis',1,'Principal',100,'CallSchedule',schedule,'CallExerciseStyle',"American",'Name',"optionembeddedfixedbond_instrument")
Required OptionEmbeddedFixedBond Name-Value Pair Arguments
Coupon rate for OptionEmbeddedFixedBond,
specified as the comma-separated pair consisting of
'CouponRate' as a scalar decimal or an
NINST-by-1 vector of
decimals for an annual rate or a timetable where the first column is
dates and the second column is associated rates. The date indicates
the last day that the coupon rate is valid.
Note
If you are creating one or more
OptionEmbeddedFixedBond instruments and
use a timetable, the timetable specification applies to all of
the OptionEmbeddedFixedBond instruments.
CouponRate does not accept an
NINST-by-1 cell array
of timetables as input.
Data Types: double | timetable
Maturity date for OptionEmbeddedFixedBond,
specified as the comma-separated pair consisting of
'Maturity' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the Maturity property is stored as a
datetime.
Call schedule, specified as the comma-separated pair consisting of
'CallSchedule' and a timetable of call dates
and strikes.
If you use a date character vector or date string for the dates in
this timetable, the format must be recognizable by datetime because
the CallSchedule property is stored as a datetime.
Note
The OptionEmbeddedFixedBond instrument
supports either CallSchedule and
CallExerciseStyle or
PutSchedule and
PutExerciseStyle, but not both.
If you are creating one or more
OptionEmbeddedFixedBond instruments
and use a timetable, the timetable specification applies to
all of the OptionEmbeddedFixedBond
instruments. CallSchedule does not accept
an NINST-by-1 cell
array of timetables as input.
Data Types: timetable
Put schedule, specified as the comma-separated pair consisting of
'PutSchedule' and a timetable of call dates
and strikes.
If you use a date character vector or date string for dates in
this timetable, the format must be recognizable by datetime because
the PutSchedule property is stored as a datetime.
Note
The OptionEmbeddedFixedBond instrument
supports either CallSchedule and
CallExerciseStyle or
PutSchedule and
PutExerciseStyle, but not both.
If you are creating one or more
OptionEmbeddedFixedBond instruments
and use a timetable, the timetable specification applies to
all of the OptionEmbeddedFixedBond
instruments. PutSchedule does not accept
an NINST-by-1 cell
array of timetables as input.
Data Types: timetable
Optional OptionEmbeddedFixedBond Name-Value Pair Arguments
Frequency of payments per year, specified as the comma-separated
pair consisting of 'Period' and a scalar integer
or an NINST-by-1 vector of
integers. Values for Period are:
1, 2,
3, 4, 6,
and 12.
Data Types: double
Call option exercise style, specified as the comma-separated pair
consisting of 'CallExerciseStyle' and a scalar
string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Note
The CallSchedule is a timetable of
call dates and strikes. If you do not specify a
CallExerciseStyle, then based on the
CallSchedule specification, a
default value of CallExerciseStyle is
assigned as follows:
If there is one exercise date in the
CallSchedule, then theCallExerciseStyleis an"European".If there are two exercise dates in the
CallSchedule, then theCallExerciseStyleis an"American"with a start date and maturity.If there are more than two exercise dates in the
CallSchedule, then theCallExerciseStyleis an"Bermudan".
If the you define a CallExerciseStyle
and this is not consistent with what you have specified in
the CallSchedule, you receive an error
message.
Data Types: string | cell | char
Put option exercise style, specified as the comma-separated pair
consisting of 'PutExerciseStyle' and a scalar
string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Note
The PutSchedule is a timetable of
call dates and strikes. If you do not specify a
PutExerciseStyle, then based on the
PutSchedule specification, a
default value of PutExerciseStyle is
assigned as follows:
If there is one exercise date in the
PutSchedule, then thePutExerciseStyleis an"European".If there are two exercise dates in the
PutSchedule, then thePutExerciseStyleis an"American"with a start date and maturity.If there are more than two exercise dates in the
PutSchedule, then thePutExerciseStyleis an"Bermudan".
If the you define a PutExerciseStyle
and this is not consistent with what you have specified in
the PutSchedule, you receive an error
message.
Data Types: string | cell | char
Day count basis, specified as the comma-separated pair consisting
of 'Basis' and scalar integer or an
NINST-by-1 vector of
integers using the following values:
0 — actual/actual
1 — 30/360 (SIA)
2 — actual/360
3 — actual/365
4 — 30/360 (PSA)
5 — 30/360 (ISDA)
6 — 30/360 (European)
7 — actual/365 (Japanese)
8 — actual/actual (ICMA)
9 — actual/360 (ICMA)
10 — actual/365 (ICMA)
11 — 30/360E (ICMA)
12 — actual/365 (ISDA)
13 — BUS/252
For more information, see Basis.
Data Types: double
Notional principal amount or principal value schedule, specified
as the comma-separated pair consisting of
'Principal' and a scalar numeric or an
NINST-by-1 numeric vector
or a timetable.
Principal accepts a timetable, where the
first column is dates and the second column is the associated
notional principal value. The date indicates the last day that the
principal value is valid.
Note
If you are creating one or more
OptionEmbeddedFixedBond instruments and
use a timetable, the timetable specification applies to all of
the OptionEmbeddedFixedBond instruments.
Principal does not accept an
NINST-by-1 cell array
of timetables as input.
Data Types: double | timetable
Flag indicating whether cash flow adjusts for day count
convention, specified as the comma-separated pair consisting of
'DaycountAdjustedCashFlow' and a scalar
logical or an NINST-by-1
vector of logicals with values of true or
false.
Data Types: logical
Business day conventions, specified as the comma-separated pair
consisting of 'BusinessDayConvention' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array. The selection for business day
convention determines how nonbusiness days are treated. Nonbusiness
days are defined as weekends plus any other date that businesses are
not open (for example, statutory holidays). Values are:
"actual"— Nonbusiness days are effectively ignored. Cash flows that fall on non-business days are assumed to be distributed on the actual date."follow"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the following business day."modifiedfollow"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead."previous"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the previous business day."modifiedprevious"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.
Data Types: char | cell | string
Holidays used in computing business days, specified as the
comma-separated pair consisting of 'Holidays' and
dates using an NINST-by-1
vector of a datetime array, string array, or date character vectors.
For
example:
H = holidays(datetime('today'),datetime(2025,12,15)); OptionEmbeddedFixedBondObj = fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),... 'CallSchedule',schedule,'CallExerciseStyle',"american",'Holidays',H)
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
End-of-month rule flag for generating dates when
Maturity is an end-of-month date for a month
with 30 or fewer days, specified as the comma-separated pair
consisting of 'EndMonthRule' and a scalar logical
or an NINST-by-1 vector of
logicals with values of true or
false.
If you set
EndMonthRuletofalse, the software ignores the rule, meaning that a payment date is always the same numerical day of the month.If you set
EndMonthRuletotrue, the software sets the rule on, meaning that a payment date is always the last actual day of the month.
Data Types: logical
Bond issue date, specified as the comma-separated pair consisting
of 'IssueDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the IssueDate property is stored as a
datetime.
Irregular first coupon date, specified as the comma-separated pair
consisting of 'FirstCouponDate' and a scalar or
an NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
When FirstCouponDate and
LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not specify
FirstCouponDate, the cash flow payment dates
are determined from other inputs.
If you use date character vectors or date strings, the format must
be recognizable by datetime because
the FirstCouponDate property is stored as a
datetime.
Irregular last coupon date, specified as the comma-separated pair
consisting of 'LastCouponDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
If you specify LastCouponDate but not
FirstCouponDate,
LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated
at LastCouponDate, regardless of where it falls,
and is followed only by the bond's maturity cash flow date. If you
do not specify LastCouponDate, the cash flow
payment dates are determined from other inputs.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the LastCouponDate property is stored as a
datetime.
Forward starting date of payments, specified as the
comma-separated pair consisting of 'StartDate'
and a scalar or an NINST-by-1
vector using a datetime array, string array, or date character
vectors.
To support existing code, OptionEmbeddedFixedBond also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the StartDate property is stored as a
datetime.
User-defined name for the instrument, specified as the
comma-separated pair consisting of 'Name' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: char | cell | string
Output Arguments
Option Embedded Fixed Bond instrument, returned as an
OptionEmbeddedFixedBond object.
Properties
Coupon annual rate, returned as a scalar decimal or an
NINST-by-1 vector of decimals or a
timetable.
Data Types: double | timetable
Maturity date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Call schedule, returned as a timetable.
Data Types: datetime
Put schedule, returned as a timetable.
Data Types: datetime
Coupons per year, returned as a scalar integer or an
NINST-by-1 vector of
integers.
Data Types: double
Day count basis, returned as a scalar integer or an
NINST-by-1 vector of integers.
Data Types: double
Notional principal amount or principal value schedule, returned as a
scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: timetable | double
Flag indicating whether cash flow adjusted for day count convention,
returned as scalar logical or an
NINST-by-1 vector of logicals with
values of true or false.
Data Types: logical
Business day conventions, returned as a string or an
NINST-by-1 string array.
Data Types: string
Holidays used in computing business days, returned as an
NINST-by-1 vector of
datetimes.
Data Types: datetime
End-of-month rule flag for generating dates when
Maturity is an end-of-month date for a month with 30
or fewer days, returned as a scalar logical or an
NINST-by-1 vector of
logicals.
Data Types: logical
Bond issue date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Irregular first coupon date, returned as a scalar datetime or an
NINST-by-1 vector of datetimes.
Data Types: datetime
Irregular last coupon date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Forward starting date of payments, returned as a scalar datetime or an
NINST-by-1 vector of datetimes.
Data Types: datetime
This property is read-only.
Call option exercise style, returned as a scalar string or an
NINST-by-1 string array with
values of "European", "American", or
"Bermuda".
Data Types: string
This property is read-only.
Put option exercise style, returned as a scalar string or an
NINST-by-1 string array with
values of "European", "American", or
"Bermuda".
Data Types: string
User-defined name for the instrument, returned as a string or an
NINST-by-1 string array.
Data Types: string
Object Functions
setCallExercisePolicy | Set call exercise policy for OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond
instrument |
setPutExercisePolicy | Set put exercise policy for OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond
instrument |
Examples
This example shows the workflow to price American, European, and Bermudan exercise styles for three callable OptionEmbeddedFixedBond instruments when you use a HullWhite model and an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create OptionEmbeddedFixedBond Instrument Objects
Use fininstrument to create three OptionEmbeddedFixedBond instrument objects with the different exercise styles.
Maturity = datetime(2024,1,1); % Option embedded bond (Bermudan callable bond) Strike = [100; 100]; ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)]; Period = 1; CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); CallableBondBermudan = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,... 'CouponRate',0.025,'Period',Period, ... 'CallSchedule',CallSchedule,'CallExerciseStyle', "bermudan")
CallableBondBermudan =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0250
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: [2×1 datetime]
PutDates: [0×1 datetime]
CallSchedule: [2×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "bermudan"
PutExerciseStyle: [0×0 string]
Name: ""
% Option embedded bond (American callable bond) Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Period = 1; CallableBondAmerican = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,... 'CouponRate',0.025,'Period', Period, ... 'CallSchedule',CallSchedule,'CallExerciseStyle',"american")
CallableBondAmerican =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0250
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: 01-Jan-2024
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "american"
PutExerciseStyle: [0×0 string]
Name: ""
% Option embedded bond (European callable bond) Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Period = 1; CallableBondEuropean = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,... 'CouponRate',0.025,'Period',Period, ... 'CallSchedule',CallSchedule)
CallableBondEuropean =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0250
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: 01-Jan-2024
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: ""
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [10×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instruments
Use price to compute the price and sensitivities for the three OptionEmbeddedFixedBond instruments.
[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])Price = 103.2729
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ _______
103.27 -290.33 1375.9 -148.28
[Price, outPR] = price(HWTreePricer,CallableBondAmerican,["all"])Price = 100
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _____ _____ ____
100 0 0 0
[Price, outPR] = price(HWTreePricer,CallableBondEuropean,["all"])Price = 107.7023
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _______ ______ ____
107.7 -602.56 4086.4 0
This example shows the workflow to price multiple callable OptionEmbeddedFixedBond instruments with Bermudan exercise styles when you use a HullWhite model and an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create OptionEmbeddedFixedBond Instrument Objects
Use fininstrument to create an OptionEmbeddedFixedBond instrument object for three Option Embedded Fixed Bond instruments.
Maturity = datetime([2025,1,1 ; 2026,1,1 ; 2027,1,1]); % Option embedded bond (Bermudan callable bond) Strike = [100 ; 200 ; 300]; ExerciseDates = datetime([2022,1,1 ; 2023,1,1 ; 2024,1,1]); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Period = 1; CallableBondBermudan = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,... 'CouponRate',0.025,'Period', Period, ... 'CallSchedule',CallSchedule,'CallExerciseStyle',"Bermudan")
CallableBondBermudan=3×1 OptionEmbeddedFixedBond array with properties:
CouponRate
Period
Basis
EndMonthRule
Principal
DaycountAdjustedCashFlow
BusinessDayConvention
Holidays
IssueDate
FirstCouponDate
LastCouponDate
StartDate
Maturity
CallDates
PutDates
CallSchedule
PutSchedule
CallExerciseStyle
PutExerciseStyle
Name
When you create multiple OptionEmbeddedFixedBond instruments and use a timetable for CallSchedule, the timetable specification applies to all of the OptionEmbeddedFixedBond instruments. The CallSchedule input argument does not accept an NINST-by-1 cell array of timetables as input.
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [10×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instruments
Use price to compute the prices and sensitivities for the OptionEmbeddedFixedBond instruments.
[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])Price = 3×1
104.5001
102.0649
97.6664
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _______ ______ _______
104.5 -584.34 4134.2 -166.73
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ _______
102.06 -621.72 4850.3 -201.07
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ _______
97.666 -743.76 6857.7 -84.933
This example shows the workflow to price an OptionEmbeddedFixedBondOption instrument when using a HullWhite model and an IRMonteCarlo pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2019,1,1); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 01-Jan-2019
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create OptionEmbeddedFixedBondOption Instrument Object
Use fininstrument to create an OptionEmbeddedFixedBondOption instrument object.
% Option embedded bond (European callable bond) Maturity = datetime(2022,9,15); Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(datetime(2020,3,15), 50); Period = 1; CallableBondEuropean = fininstrument("OptionEmbeddedFixedBond",'Maturity',Maturity,... 'CouponRate',0.025,'Period',Period, ... 'CallSchedule',CallSchedule)
CallableBondEuropean =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0250
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2022
CallDates: 15-Mar-2020
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: ""
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)
HullWhiteModel =
HullWhite with properties:
Alpha: 0.3200
Sigma: 0.4900
Create IRMonteCarlo Pricer Object
Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')
outPricer =
HWMonteCarlo with properties:
NumTrials: 1000
RandomNumbers: []
DiscountCurve: [1×1 ratecurve]
SimulationDates: [15-Mar-2019 15-Sep-2019 15-Mar-2020 15-Sep-2020 15-Mar-2021 15-Sep-2021 15-Mar-2022 15-Sep-2022 15-Mar-2023]
Model: [1×1 finmodel.HullWhite]
Price OptionEmbeddedFixedBondOption Instrument
Use price to compute the price and sensitivities for the OptionEmbeddedFixedBondOption instrument.
[Price,outPR] = price(outPricer,CallableBondEuropean,["all"])Price = 58.1882
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ _____
58.188 -125.43 356.04 18.24
This example shows the workflow to price a callable OptionEmbeddedFixedBond instrument and obtain the exercise probabilities when you use a BlackKarasinski model and an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018, 1, 1); ZeroTimes = calyears(1:4)'; ZeroRates = [0.035; 0.042147; 0.047345; 0.052707]; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)
ZeroCurve =
ratecurve with properties:
Type: "zero"
Compounding: 1
Basis: 0
Dates: [4×1 datetime]
Rates: [4×1 double]
Settle: 01-Jan-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create OptionEmbeddedFixedBond Instrument Object
Use fininstrument to create an OptionEmbeddedFixedBond instrument object with an American exercise style.
CouponRate = 0.0425; Strike = [95; 98]; ExerciseDates = [datetime(2021,1,1); datetime(2022,1,1)]; Maturity = datetime(2022,1,1); Period = 1; CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity,... 'CouponRate',CouponRate,'Period', Period, ... 'CallSchedule',CallSchedule,... 'CallExerciseStyle', "American",... 'Name',"MyCallableBond")
CallableBond =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0425
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2022
CallDates: [2×1 datetime]
PutDates: [0×1 datetime]
CallSchedule: [2×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "american"
PutExerciseStyle: [0×0 string]
Name: "MyCallableBond"
Create BlackKarasinski Model Object
Use finmodel to create a BlackKarasinski model object.
VolCurve = 0.01; AlphaCurve = 0.1; BKModel = finmodel("BlackKarasinski",'alpha',AlphaCurve,'sigma',VolCurve)
BKModel =
BlackKarasinski with properties:
Alpha: 0.1000
Sigma: 0.0100
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
BKTreePricer = finpricer("IRTree",'Model',BKModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
BKTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [4×1 datetime]
Model: [1×1 finmodel.BlackKarasinski]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instrument
Use price to compute the price and sensitivities for the OptionEmbeddedFixedBond instrument.
[Price, PriceResults]= price(BKTreePricer, CallableBond)
Price = 92.5235
PriceResults =
priceresult with properties:
Results: [1×1 table]
PricerData: [1×1 struct]
Examine the output PriceResults.PricerData.PriceTree.ExTree, which contains the exercise indicator arrays. In the cell array, a 1 indicates an exercised option and a 0 indicates an unexercised option.
PriceResults.PricerData.PriceTree.ExTree{5} ans = 1×7 logical array
1 1 1 1 1 1 1
No options are exercised.
PriceResults.PricerData.PriceTree.ExTree{4} ans = 1×7 logical array
0 0 0 0 0 0 0
The instrument is exercised at all nodes.
PriceResults.PricerData.PriceTree.ExTree{3} ans = 1×5 logical array
0 0 0 0 0
No options are exercised.
PriceResults.PricerData.PriceTree.ExTree{2} ans = 1×3 logical array
0 0 0
No options are exercised.
View the probability of reaching each node from the root node using PriceResults.PricerData.PriceTree.ProbTree.
PriceResults.PricerData.PriceTree.ProbTree{2}ans = 1×3
0.1667 0.6667 0.1667
PriceResults.PricerData.PriceTree.ProbTree{3}ans = 1×5
0.0203 0.2206 0.5183 0.2206 0.0203
PriceResults.PricerData.PriceTree.ProbTree{4}ans = 1×7
0.0018 0.0395 0.2370 0.4433 0.2370 0.0395 0.0018
PriceResults.PricerData.PriceTree.ProbTree{5}ans = 1×7
0.0018 0.0395 0.2370 0.4433 0.2370 0.0395 0.0018
View the exercise probabilities using PriceResults.PricerData.PriceTree.ExProbTree. PriceResults.PricerData.PriceTree.ExProbTree contains the exercise probabilities. Each element in the cell array is an array containing 0's where there is no exercise, or the probability of reaching that node where exercise happens.
PriceResults.PricerData.PriceTree.ExProbTree{5}ans = 1×7
0.0018 0.0395 0.2370 0.4433 0.2370 0.0395 0.0018
PriceResults.PricerData.PriceTree.ExProbTree{4}ans = 1×7
0 0 0 0 0 0 0
PriceResults.PricerData.PriceTree.ExProbTree{3}ans = 1×5
0 0 0 0 0
PriceResults.PricerData.PriceTree.ExProbTree{2}ans = 1×3
0 0 0
View the exercise probabilities at each tree level using PriceResults.PricerData.PriceTree.ExProbsByTreeLevel. PriceResults.PricerData.PriceTree.ExProbsByTreeLevel is an array in which each row holds the exercise probability for a given option at each tree observation time.
PriceResults.PricerData.PriceTree.ExProbsByTreeLevel
ans = 1×5
0 0 0 0 1.0000
This example shows the workflow to price an OptionEmbeddedFixedBond instrument when you use a CoxIngersollRoss model and an IRTree pricing method.
Create OptionEmbeddedFixedBond Instrument Object
Use fininstrument to create a OptionEmbeddedFixedBond instrument object.
Maturity = datetime(2027,1,1);
Period = 1;
CouponRate = 0.045;
Strike = 85;
ExerciseDates = datetime(2026,1,1);
CallSchedule = timetable(ExerciseDates,Strike,VariableNames={'Strike Schedule'});
CallableBond = fininstrument("OptionEmbeddedFixedBond",Maturity=Maturity,CouponRate=CouponRate,Period=Period,CallSchedule=CallSchedule,Name="OptionEmbeddedFixedBond_inst")CallableBond =
OptionEmbeddedFixedBond with properties:
CouponRate: 0.0450
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2027
CallDates: 01-Jan-2026
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: "OptionEmbeddedFixedBond_inst"
Create CoxIngersollRoss Model Object
Use finmodel to create a CoxIngersollRoss model object.
alpha = 0.03;
theta = 0.02;
sigma = 0.1;
CIRModel = finmodel("CoxIngersollRoss",Sigma=sigma,Alpha=alpha,Theta=theta)CIRModel =
CoxIngersollRoss with properties:
Sigma: 0.1000
Alpha: 0.0300
Theta: 0.0200
Create ratecurve Object
Create a ratecurve object using ratecurve.
Times= [calyears([1 2 3 4 ])]';
Settle = datetime(2023,1,1);
ZRates = [0.035; 0.042147; 0.047345; 0.052707]';
ZDates = Settle + Times;
Compounding = -1;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZDates,ZRates,Compounding = Compounding, Basis = Basis);Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object for the CoxIngersollRoss model and use the ratecurve object for the 'DiscountCurve' name-value argument.
CIRPricer = finpricer("irtree",Model=CIRModel,DiscountCurve=ZeroCurve,Maturity=ZDates(end),NumPeriods=length(ZDates))CIRPricer =
CIRTree with properties:
Tree: [1×1 struct]
TreeDates: [4×1 datetime]
Model: [1×1 finmodel.CoxIngersollRoss]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instrument
Use price to compute the price for the OptionEmbeddedFixedBond instrument.
[Price,outPR] = price(CIRPricer,CallableBond,"all")Price = 86.1308
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
86.131 -245.57 719.73 -1.4211e-10
More About
A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time.
The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment. A vanilla bond with an embedded option is where an option contract has an underlying asset of a vanilla bond.
A step-up bond and step-down bond is a debt security with a predetermined coupon structure over time.
With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond. Stepped coupon bonds can have options features (call and puts).
An amortizing callable bond or
amortizing puttable bond work under a scheduled
Principal.
An amortizing callable bond gives the issuer the right to call back the bond, but
instead of paying the Principal amount at maturity, it repays
part of the principal along with the coupon payments. An amortizing puttable bond,
repays part of the principal along with the coupon payments and gives the bondholder
the right to sell the bond back to the issuer.
Tips
After creating an OptionEmbeddedFixedBond object, you can modify
the CallSchedule and CallExerciseStyle using
setCallExercisePolicy. Or, you can modify the
PutSchedule and PutExerciseStyle values
using setPutExercisePolicy.
Version History
Introduced in R2020aYou can price OptionEmbeddedFixedBond instruments using a
CoxIngersollRoss model object
and an IRTree pricing
method.
You can use the oas function to calculate
the option adjusted spread (OAS) when using an
OptionEmbeddedFixedBond object with an
IRTree pricer object and a HullWhite, BlackKarasinski,
or BlackDermanToy
model.
Although OptionEmbeddedFixedBond supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)