bondbycir

Price bond from Cox-Ingersoll-Ross interest-rate tree

Description

example

[Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity) prices bond from a Cox-Ingersoll-Ross (CIR) interest-rate tree. bondbycir computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

example

[Price,PriceTree] = bondbycir(___,Name,Value) adds additional name-value pair arguments.

Examples

collapse all

Define the CouponRate for a bond.

CouponRate = 0.035;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)
CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the bond.

[Price,PriceTree] = bondbycir(CIRT,CouponRate,Settle,Maturity) 
Price = 94.0880
PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
       dObs: [736696 737061 737426 737791 738157]
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments

collapse all

Interest-rate tree structure, created by cirtree.

Data Types: struct

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.

Data Types: double | cell

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays.

The Settle date for every bond is set to the ValuationDate of the CIR tree. The bond argument Settle is ignored.

Data Types: char | double | string | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character vectors, string arrays, or datetime arrays representing the maturity date for each bond.

Data Types: char | double | string | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: [Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.

Data Types: double

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector.

  • 0 = actual/actual

  • 1 = 30/360 (SIA)

  • 2 = actual/360

  • 3 = actual/365

  • 4 = 30/360 (PSA)

  • 5 = 30/360 (ISDA)

  • 6 = 30/360 (European)

  • 7 = actual/365 (Japanese)

  • 8 = actual/actual (ICMA)

  • 9 = actual/360 (ICMA)

  • 10 = actual/365 (ICMA)

  • 11 = 30/360E (ICMA)

  • 12 = actual/365 (ISDA)

  • 13 = BUS/252

For more information, see Basis.

Data Types: double

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month having 30 or fewer days, specified as the comma-separated pair consisting of 'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

  • 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.

  • 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a NINST-by-1 vector using a serial date number, date character vector, string array, or datetime array.

Data Types: double | char | string | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of 'FirstCouponDate' and a NINST-by-1 vector using a serial date number, date character vector, string array, or datetime array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | string | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of 'LastCouponDate' and a NINST-by-1 vector using a serial date number, date character vector, string array, or datetime array.

In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | string | datetime

Forward starting date of payments (the date from which a bond cash flow is considered), specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or datetime arrays.

If you do not specify StartDate, the effective start date is the Settle date.

Data Types: char | double | string | datetime

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1 vector of nonnegative face values or a NINST-by-1 cell array of face values or face value schedules. For the latter case, each element of the cell array is a NumDates-by-2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Data Types: cell | double

Flag to adjust cash flows based on actual period day count, specified as the comma-separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of logicals with values of 0 (false) or 1 (true).

Data Types: logical

Business day conventions, specified as the comma-separated pair consisting of 'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if BusinessDayConvention is different for each leg) cell array of character vectors of business day conventions. The selection for business day convention determines how nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other date that businesses are not open (e.g. statutory holidays). Values are:

  • actual — Nonbusiness days are effectively ignored. Cash flows that fall on nonbusiness days are assumed to be distributed on the actual date.

  • follow — Cash flows that fall on a non-business day are assumed to be distributed on the following business day.

  • modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead.

  • previous — Cash flows that fall on a non-business day are assumed to be distributed on the previous business day.

  • modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.

Data Types: char | cell

Holidays used in computing business days, specified as the comma-separated pair consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.

Data Types: double

Output Arguments

collapse all

Expected bond prices at time 0, returned as a NINST-by-1 vector.

Tree structure of instrument prices, returned as a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:

  • PriceTree.tObs contains the observation times.

  • PriceTree.dObs contains the observation dates.

  • PriceTree.PTree contains the clean prices.

  • PriceTree.AITree contains the accrued interest.

More About

collapse all

Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.

References

[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates." Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley, 2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in Financial Models." The Review of Financial Studies. Vol 3. 1990, pp. 393–430.

Introduced in R2018a