measuredAntenna

Use measured pattern data as exciter for backing structures

Since R2023a

Description

The `measuredAntenna` object lets you perform port and field analysis on the measured field data of an antenna or array. You can import measured field data from a `.txt` file, `.csv` file, or `.xlsx` file to the MATLAB® workspace and assign it to the relevant properties of this object. The field data includes Cartesian electric and embedded electric field components in V/m at the observation points, spherical coordinates of the observation points, the phase center, number of excitation ports, measurement frequencies, and S-parameters. The `measuredAntenna` object also lets you replace the physical exciter of the curved reflector antennas from the antenna catalog with measured field data of the exciter and perform fundamental analysis on the reflector antenna using the Physical Optics solver.

Creation

Syntax

``m = measuredAntenna``
``m = measuredAntenna(Name=Value)``

Description

example

````m = measuredAntenna` creates an antenna field data object with the x, y, and z-components of the electric field being 0.1 V/m across the observed direction.```

example

````m = measuredAntenna(Name=Value)` creates a measured antenna object, with additional Properties specified by one or more name–value arguments. `Name` is the property name and `Value` is the corresponding value. You can specify several name-value arguments in any order as `Name1`= `Value1`, `...`, `NameN`=`ValueN`. Properties not specified retain their default values.```

Properties

expand all

Cartesian components of the electric field in V/m at observation points, specified as a P-by-3-by-F matrix. P represents the number of observation points and components are specified in [X Y Z] order. The default value is [0.1 0.1 0.1] V/m at a single observation point. F represents the number of frequencies over which the electric field is measured.

Example: `E(:,:,1) = [0.5 0.3 0.7]`

Example: ```E(1,:,:) = [0.1 0.1 0.1; 0.2 0.3 0.15;...0.5 0.45 0.35]```

Data Types: `double`
Complex Number Support: Yes

Spherical coordinates of the observation points, specified as a P-by-3 matrix. P represents the number of observation points and the coordinates are specified as [Azimuth(degree) Elevation(degree) Radius(meter)]. The default value is a single observation point at [0 90 100].

Example: `[30 60 200]`

Example: `[0 90 100; ...; 359 359 100]`

Data Types: `double`

Cartesian coordinates of the phase center of the measured antenna in meter, specified as a 1-by-3 vector in [X Y Z] order. The default phase center is at [0 0 0.075]. Phase center is defined as a point in space from which, when emitted, the far-field phase fronts remain spherical in a certain angular area of interest. `PhaseCenter` denotes the average phase center of the incident electric field, `E`.

Example: `[0 1 1]`

Data Types: `double`

Number of excitation ports in the measured antenna or array, specified as a positive scalar integer. Number of antenna ports specified in this property must be equal to the number of antenna ports in `EmbeddedE` property.

Example: `2`

Data Types: `double`

Frequencies at which the electric field of the antenna or array was measured, specified as a scalar for a single frequency or a F-by-1 vector for multiple frequencies, where F is the number of frequencies.

Example: `1e9`

Example: `[1e9 1.25e9 1.5e9]`

Data Types: `double`

Coordinate system for the measured field data, specified as a string amongst:

• `rectangular` - Cartesian coordinates, where the points are specified as [x y z].

• `polar` - Spherical coordinates, where the points are specified as [azimuth elevation radial].

Example: `"polar"`

Data Types: `string`

Azimuth angles used to measure electric field, specified as a scalar or A-by-1 vector in degrees, where A is the number of azimuth angles.

Example: `[0:5:90]`

Data Types: `double`

Elevation angles used to measure electric field, specified as a scalar or E-by-1 vector in degrees, where E is the number of elevation angles.

Example: `[0:5:90]`

Data Types: `double`

S-parameters for all excitation ports at each frequency, specified as a `sparameters` object.

Example: `sparameters("sample.s2p")`

Example: `sparameters(dipole,70e6,50)`

Example: `sparameters(linearArray,140e6)`

Data Types: `double`

Cartesian components (P-by-3) of embedded electric field magnitude in V/m when the `FieldCoordinate` is `"rectangular"`, for each port (N) at each frequency (F) at each observation point in the `Direction` property, specified as a 4-D array. Number of points is defined by P.

When the `FieldCoordinate` is `"polar"`, the three columns in P-by-3 matrix represent azimuth angle, elevation angle, and radial magnitude. Set `NumPorts` value greater than 1 to enable this property.

Example: Let `EmbeddedE = emb` in a rectangular coordinate system. To access the electric field data for a single port at a single frequency, use `emb(:,:,1,1)`.

Data Types: `double`
Complex Number Support: Yes

Impedance to terminate other ports except the excitation port while computing the embedded pattern, specified as a real scalar. Set `NumPorts` value greater than 1 to enable this property.

Example: 75

Data Types: `double`

Excitation amplitude of array elements in Volts, specified as either a positive scalar for uniform amplitude or a positive vector of size 1-by-NumPorts for non-uniform amplitude across the individual elements.

Example: `2`

Example: `[2 4]`

Data Types: `double`

Phase shift of array elements in degrees, specified as either a positive scalar for uniform phase shift or a positive vector of size 1-by-NumPorts for non-uniform phase shift across the individual elements. `PhaseShift` values correspond to the respective excitation voltages of the individual array elements.

Example: `45`

Example: `[45 -45]`

Data Types: `double`

Option to calculate the total electric field from embedded field data, specified as either `false` or `0` for disabled or `true` or `1` for enabled. By default, this option is disabled. When this option is set to `true` or `1`, the `EHfields` and `pattern` use the calculated total electric field in their results.

Example: `true`

Data Types: `logical`

Object Functions

 `EHfields` Electric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays `pattern` Plot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array `sparameters` Calculate S-parameters for antennas and antenna arrays

Examples

collapse all

This example shows how to use the measured electric field data of a dipole antenna to excite a parabolic reflector structure. The example uses `EHfields` function to generate the electric field data. You can import the electric field data of any external antenna into the `measuredAntenna` object. The electric field magnitude is expressed in V/m and coordinates are expressed in meters and degrees.

Create Dipole antenna, save field data and plot electric field

Design a dipole antenna operating at 10 GHz. Save the complex E-field data of this dipole antenna in a variable.

```freq = 10e9; ant = design(dipole(Tilt=90,TiltAxis=[0 1 0]),freq); E = EHfields(ant,freq)```
```E = 3×441 complex 12.2640 +50.7170i 10.9976 +50.0787i 7.3008 +48.1050i 1.4768 +44.6404i -5.9848 +39.4954i -14.4352 +32.5521i -23.1070 +23.9215i -31.1661 +14.1665i -37.7697 + 4.5675i -42.1368 - 2.7839i -43.6701 - 5.5885i -42.1368 - 2.7839i -37.7697 + 4.5675i -31.1661 +14.1665i -23.1070 +23.9215i -14.4352 +32.5521i -5.9848 +39.4954i 1.4768 +44.6404i 7.3008 +48.1050i 10.9976 +50.0787i 12.2640 +50.7170i 12.2640 +50.7170i 11.1198 +50.1403i 7.7794 +48.3683i 2.5221 +45.2930i -4.2021 +40.7980i -11.7984 +34.8525i -19.5659 +27.6430i -26.7481 +19.7338i -32.5931 +12.2089i -36.4289 + 6.6286i -37.7683 + 4.5432i -36.4289 + 6.6286i -32.5931 +12.2089i -26.7481 +19.7338i -19.5659 +27.6430i -11.7984 +34.8525i -4.2021 +40.7980i 2.5221 +45.2930i 7.7794 +48.3683i 11.1198 +50.1403i 12.2640 +50.7170i 12.2640 +50.7170i 11.4376 +50.3011i 9.0261 +49.0437i 5.2409 +46.9257i 0.4204 +43.9546i -4.9931 +40.2179i -10.4858 +35.9436i -15.5155 +31.5474i -0.0032 - 0.0037i -0.0066 + 0.0011i -0.0100 + 0.0056i -0.0134 + 0.0095i -0.0168 + 0.0127i -0.0203 + 0.0148i -0.0236 + 0.0161i -0.0266 + 0.0165i -0.0289 + 0.0165i -0.0304 + 0.0164i -0.0310 + 0.0164i -0.0304 + 0.0164i -0.0289 + 0.0165i -0.0266 + 0.0165i -0.0236 + 0.0161i -0.0203 + 0.0148i -0.0168 + 0.0127i -0.0134 + 0.0095i -0.0100 + 0.0056i -0.0066 + 0.0011i -0.0032 - 0.0037i -0.0032 - 0.0037i -0.3429 - 0.2264i -1.3285 - 0.9205i -2.8808 - 2.1296i -4.8716 - 3.9044i -7.1303 - 6.2680i -9.4541 - 9.1639i -11.6197 -12.3828i -13.3983 -15.4892i -14.5759 -17.8215i -14.9893 -18.6994i -14.5759 -17.8215i -13.3983 -15.4892i -11.6197 -12.3828i -9.4541 - 9.1639i -7.1303 - 6.2680i -4.8716 - 3.9044i -2.8808 - 2.1296i -1.3285 - 0.9205i -0.3429 - 0.2264i -0.0032 - 0.0037i -0.0032 - 0.0037i -0.5501 - 0.3661i -2.1389 - 1.4703i -4.6339 - 3.3339i -7.8169 - 5.9536i -11.4009 - 9.2597i -15.0500 -13.0609i -18.4047 -16.9958i -0.0000 - 0.0001i -7.2283 - 4.8904i -13.8197 - 9.7535i -19.1797 -14.4759i -22.7993 -18.7804i -24.2979 -22.1691i -23.4631 -23.8999i -20.2802 -23.0396i -14.9568 -18.7036i -7.9518 -10.6388i 0.0000 + 0.0000i 7.9518 +10.6388i 14.9568 +18.7036i 20.2802 +23.0396i 23.4631 +23.8999i 24.2979 +22.1691i 22.7993 +18.7804i 19.1797 +14.4759i 13.8197 + 9.7535i 7.2283 + 4.8904i 0.0000 + 0.0001i -0.0000 - 0.0001i -6.8732 - 4.6440i -13.1346 - 9.2204i -18.2140 -13.5840i -21.6258 -17.4461i -23.0108 -20.3326i -22.1744 -21.5854i -19.1172 -20.4476i -14.0588 -16.3064i -7.4559 - 9.1444i 0.0000 + 0.0000i 7.4559 + 9.1444i 14.0588 +16.3064i 19.1172 +20.4476i 22.1744 +21.5854i 23.0108 +20.3326i 21.6258 +17.4461i 18.2140 +13.5840i 13.1346 + 9.2204i 6.8732 + 4.6440i 0.0000 + 0.0001i -0.0000 - 0.0001i -5.8441 - 3.9346i -11.1536 - 7.7197i -15.4340 -11.1572i -18.2708 -13.9663i -19.3675 -15.7763i -18.5787 -16.1634i -15.9355 -14.7479i ```

Plot the electric field vectors of this dipole antenna.

```fig = figure; EHfields(ant,freq,ViewField="E");```

Extract coordinates of electric field points and pass field data to `measuredAntenna`

Extract the Cartesian coordinates of direction vectors from the electric field plot using `quiver`. Convert these Cartesian coordinates into spherical coordinates using `cart2sph` function.

```quH = fig.Children(4).Children; pts = [quH.XData;quH.YData;quH.ZData]; [phi,theta,radius] = cart2sph(pts(1,:),pts(2,:),pts(3,:)); dir = [phi' 90-theta' radius'];```

Create a `measuredAntenna` object and pass the electric field data (in V/m.), spherical coordinates of the electric field points, and the phase center of the this field to the respective properties of the `measuredAntenna` object.

```ms = measuredAntenna; ms.E = E'; ms.Direction = dir; lambda = 3e8/freq; f = 5 * lambda; ms.PhaseCenter = [0 0 f];```

Create parabolic reflector antenna with `measuredAntenna` as exciter

Create a parabolic reflector antenna with the `measuredAntenna` data as `Exciter`. Plot the radiation pattern of this antenna at 10 GHz.

```back = reflectorParabolic; back.Exciter = ms; figure; pattern(back,10e9)```

This example shows how to import and analyze the measured pattern data of a linear array.

Import Measured Pattern Data

Define the frequency range of the data and number of antenna elements in the array. Import the data from a text file using `readmatrix` function.

The text file contains measured field data for a linear array of dipoles at 3 frequencies 1.6GHz, 2GHz, and 2.4GHz.

```fRange = [1.6e9 2e9 2.4e9]; numAnt = 2; patternData = readmatrix("MeasuredData.txt"); patternData```
```patternData = 2701×30 complex 102 × 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.8000 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.7500 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.7000 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.6500 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.6000 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.5500 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.5000 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.4500 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.4000 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -1.3500 + 0.0000i 1.8000 + 0.0000i 0.1500 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i ⋮ ```

Extract the field data, direction data, and embedded field data from the imported data. Further, extract azimuth and elevation data from the direction data.

```% E-field data eField(:,:,1) = patternData(:,1:3); eField(:,:,2) = patternData(:,4:6); eField(:,:,3) = patternData(:,7:9); % Direction, azimuth, and elevation data dir = patternData(:,10:12); az = dir(1:73,1); el = dir(1:73:end,2); % Embedded E-field data embE(:,:,1,1) = patternData(:,13:15); embE(:,:,2,1) = patternData(:,16:18); embE(:,:,1,2) = patternData(:,19:21); embE(:,:,2,2) = patternData(:,22:24); embE(:,:,1,3) = patternData(:,25:27); embE(:,:,2,3) = patternData(:,28:30);```

Import and extract S-parameters data from Touchstone files.

```% Import S-parameters data sParamData1 = sparameters("Parameters_1.6ghz.s2p"); sParamData2 = sparameters("Parameters_2ghz.s2p"); sParamData3 = sparameters("Parameters_2.4ghz.s2p"); % Extract S-parameters data sParam(:,:,1) = sParamData1.Parameters; sParam(:,:,2) = sParamData2.Parameters; sParam(:,:,3) = sParamData3.Parameters; sParamFreq(:,1) = sParamData1.Frequencies; sParamFreq(:,2) = sParamData2.Frequencies; sParamFreq(:,3) = sParamData3.Frequencies; sParam```
```sParam = sParam(:,:,1) = 0.6991 - 0.5140i 0.0523 + 0.0366i 0.0523 + 0.0366i 0.6991 - 0.5140i sParam(:,:,2) = 0.2076 - 0.0674i -0.0918 - 0.1830i -0.0918 - 0.1830i 0.2076 - 0.0674i sParam(:,:,3) = 0.6581 + 0.2567i -0.0490 + 0.0871i -0.0490 + 0.0871i 0.6581 + 0.2567i ```
`sParamFreq`
```sParamFreq = 1×3 109 × 1.6000 2.0000 2.4000 ```
`s = sparameters(sParam,sParamFreq);`

Assign Data to `measuredAntenna`

Assign the extracted data to a `measuredAntenna` object.

```mesAnt = measuredAntenna(E=eField, Direction=dir, NumPorts=numAnt,... Azimuth=az, Elevation=el, FieldCoordinate="polar",... EmbeddedE=embE, FieldFrequency=fRange, Sparameters=s)```
```mesAnt = measuredAntenna with properties: E: [2701x3x3 double] Direction: [2701x3 double] PhaseCenter: [0 0 0.0750] NumPorts: 2 FieldFrequency: [3x1 double] FieldCoordinate: "polar" Azimuth: [-180 -175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 ... ] (1x73 double) Elevation: [180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0] Sparameters: [1x1 sparameters] AmplitudeTaper: 1 PhaseShift: 0 EmbeddedE: [2701x3x2x3 double] TerminationImpedance: 50 CalculateTotalField: 0 ```

Visualize Measured Pattern Data

Plot the radiation pattern and electric field for this `measuredAntenna` at 2GHz, while plot S-parameters over the entire frequency range.

`pattern(mesAnt,fRange(2),Type="efield")`

`EHfields(mesAnt,fRange(2))`

```sp = sparameters(mesAnt,fRange); rfplot(sp)```

Version History

Introduced in R2023a

expand all