Developing Forecast Models from Time-Series Data in MATLAB - Part 2
Are you looking to increase your data analysis capabilities? Do you need to perform complex analytics and automate cumbersome repetitive tasks such as batch processing? Do you need to make your programs accessible to others?
During this presentation, we demonstrate how you can use MATLAB to develop nonlinear predictive models from historical time-series measurements. As a working case study, a forecast model of short-term electricity loads for the Australian market using BOM and AEMO data is presented. This case study applies nonlinear tree bagging regression and neural network modelling techniques. At the end of the case study, the MATLAB forecast model is converted into a deployable plug-in for Microsoft Excel.
Recorded: 9 Oct 2012
Featured Product
MATLAB
Up Next:
Related Videos:
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asien-Pazifik
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)