Aramis
Followers: 0 Following: 0
Statistik
0 Fragen
6 Antworten
RANG
12.737
of 295.448
REPUTATION
4
BEITRÄGE
0 Fragen
6 Antworten
ANTWORTZUSTIMMUNG
0.00%
ERHALTENE STIMMEN
2
RANG
of 20.227
REPUTATION
N/A
DURCHSCHNITTLICHE BEWERTUNG
0.00
BEITRÄGE
0 Dateien
DOWNLOADS
0
ALL TIME DOWNLOADS
0
RANG
of 153.872
BEITRÄGE
0 Probleme
0 Lösungen
PUNKTESTAND
0
ANZAHL DER ABZEICHEN
0
BEITRÄGE
0 Beiträge
BEITRÄGE
0 Öffentlich Kanäle
DURCHSCHNITTLICHE BEWERTUNG
BEITRÄGE
0 Highlights
DURCHSCHNITTLICHE ANZAHL DER LIKES
Feeds
how to find the element which is greater than or equal to its row and smaller or equal to its column in a matrix
The best solution function s = saddle(M) % Create logical vector that are true for each saddle condition separately m...
5 Monate vor | 0
Sparse Matrix, struct, structure, Using cell arrays
function matrix = sparse2matrix(cellvec) matrix = ones(cellvec{1}) * cellvec{2}; for x=3:length(cellvec) matr...
7 Monate vor | 0
next prime number using While loops
THE BEST ANSWER function k = next_prime(n) k=n; while isprime(k)==false || k==n k = k+1; end end ...
10 Monate vor | 0
Write a function called valid_date that takes three positive integer scalar inputs year, month, day. If these three represent a valid date, return a logical true, otherwise false. The name of the output argument is valid.
The best answer function valid = valid_date(year,month,day) if not(isscalar(year))|| not(isscalar(month)) || not(isscalar(...
10 Monate vor | 1
Write a function called eligible that helps the admission officer of the Graduate School decide whether the applicant is eligible for admission based on GRE scores. The function takes two positive scalars called v and q as in
This is the BEST FCKN ANSWER function admit = eligible(v, q) admit = mean([v q]) >= 92 && min([v q]) > 88; end
10 Monate vor | 1
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm,
function [x, y] = minimax(M) x = (max(M,[],2) - min(M,[],2))'; y = max(M,[], "all")- min(M,[], "all"); end
10 Monate vor | 0