Physics-informed neural network solution of 2nd order ODE:s
Version 1.0.1 (4,48 KB) von
Andreas Almqvist
A PINN employed to solve c(x)y''+c'(x)y'-f = 0, y(0)=y(1)=0, using symbolic differentiation and the gradient decent method.
This rutine presents the design of a physics-informed neural networks applicable to solve initial- and boundary value problems described by linear ODE:s. The objective not to develop a numerical solution procedure which is more accurate and efficient than standard finite element or finite difference based methods, but to present the concept of the construction of a PINN, in the context of hydrodynamic lubrication. It is, however, worth to notice that the present PINN, contrary to FEM and FDM, is a meshless method and that it is not a datadriven machine learning program. This concept may, of course, be generalised, and perhaps it turns out to be more accurate and efficient than existing routines in solving related but nonlinear problems. This is, however, scope of future research in this direction.
Almqvist, A. (2021). Fundamentals of Physics-Informed Neural Networks Applied to Solve the Reynolds Boundary Value Problem. Lubricants, 9(8). https://doi.org/10.3390/lubricants9080082
Zitieren als
Andreas Almqvist (2026). Physics-informed neural network solution of 2nd order ODE:s (https://de.mathworks.com/matlabcentral/fileexchange/96852-physics-informed-neural-network-solution-of-2nd-order-ode-s), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2020b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.1 | Updated Description and Project Website but the code is the same. |
||
| 1.0.0 |
