Verifying convolution theorem in image processing (2-D)
Step's that we have followed;
1. Computed the f (x; y) * h(x; y) in the spatial domain. (Spatial_domain.m)
2. Compute F(u; v) . H(u; v) in frequency domain. (Frequency_domain.m)
3. Verify your codes by performing filtering in both spatial and frequency
domains and check the results.
Are you getting the same results?
Zitieren als
ABHILASH SINGH (2025). Verifying convolution theorem in image processing (2-D) (https://www.mathworks.com/matlabcentral/fileexchange/88587-verifying-convolution-theorem-in-image-processing-2-d), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert von: Principal Component Analysis (PCA) on images in MATLAB (GUI)
Inspiriert: Frequency domain lowpass filtering on images (2-D domain)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Convolution theorem
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0 |