Principal Component Analysis (PCA) on LANDSAT-8 imagery
Step's that we have followed;
1. Create a composite of bands. In our case, we have created a
composite of 11 bands of LANDSAT-8 images (Dated: 26-12-2020).
2. Convert each band into a column vector.
We will get an array of size n x p. Where p=11 in our case.
3. Standardise the data and apply PCA.
4. Reconstruct the original data.
Zitieren als
ABHILASH SINGH (2024). Principal Component Analysis (PCA) on LANDSAT-8 imagery (https://www.mathworks.com/matlabcentral/fileexchange/88582-principal-component-analysis-pca-on-landsat-8-imagery), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert von: Principal Component Analysis (PCA) on images in MATLAB (GUI)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
PCA on LANDSAT8 imagery
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0 |