Principal Component Analysis (PCA) on LANDSAT-8 imagery

Applying PCA on the composite LANDSAT-8 satellite imagery.
110 Downloads
Aktualisiert 10. Mär 2021

Lizenz anzeigen

Step's that we have followed;

1. Create a composite of bands. In our case, we have created a
composite of 11 bands of LANDSAT-8 images (Dated: 26-12-2020).

2. Convert each band into a column vector.
We will get an array of size n x p. Where p=11 in our case.

3. Standardise the data and apply PCA.

4. Reconstruct the original data.

Zitieren als

ABHILASH SINGH (2024). Principal Component Analysis (PCA) on LANDSAT-8 imagery (https://www.mathworks.com/matlabcentral/fileexchange/88582-principal-component-analysis-pca-on-landsat-8-imagery), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2020b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

PCA on LANDSAT8 imagery

Version Veröffentlicht Versionshinweise
1.0.0