Cascade Power Generation Cycle Optimization
The overall efficiency and fuel usage of the whole system (objectives) are affected by extractions pressures (opt.vars). The thermodynamic states had been extracted by CoolProp toolbox in MATLAB.
First we had to specify the pressures in the way that maximizes the efficiency and then minimizes the fuel usage. This process is a single-objective optimization. After that, we had to optimize both objectives at the same time, which is a multi-objective optimization. For this process, we used NSGA (II) in MATLAB. The obtained Pareto front has been reported as the result.
P.S.: NSGA (II) is Non-dominated Sorting Genetic Algorithm (version 2) which is an evolutionary method. (Meta Heuristic)
Zitieren als
Mohammad Daneshian (2026). Cascade Power Generation Cycle Optimization (https://github.com/thegreatmd4/Cascade_Power_Generation_Cycle_Optimization/releases/tag/1.0.0.0), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert von: Thermodynamics Property Tables, Single Objective Genetic Algorithm, NSGA II: A multi-objective optimization program, Non-dominated Sorting Genetic Algorithm II (NSGA-II), NSGA - II: A multi-objective optimization algorithm, Non Sorting Genetic Algorithm II (NSGA-II)
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0.0 |
