Parallel Computing Hands-on Workshop

Version 1.0 (11,9 MB) von Sam Marshalik
Learn how you can solve computationally and data intensive problems using multicore processors, GPUs, and compute clusters.
302 Downloads
Aktualisiert 8. Okt 2020

Parallel Computing Hands-On Workshop:

This hands-on workshop will introduce you to parallel computing with MATLAB® and Simulink®, so that you can solve computationally and data-intensive problems using multicore processors, GPUs, and computer clusters. By working through common scenarios to parallelize MATLAB algorithms and run multiple Simulink simulations in parallel, you will gain an understanding of parallel computing with MATLAB and Simulink and learn about best practices.

Highlights:

Workshop exercises and examples will vary in difficulty from simple parallel usage concepts to more advanced techniques.

• Speeding up MATLAB applications with parallel computing
• Running multiple Simulink simulations in parallel
• GPU computing
• Offloading computations and cluster computing
• Working with large data sets

Learning Video:

Along with these exercises and examples, a video is provided to reinforce how to use parallel computing with MATLAB and Simulink. This video goes through the Parallel Computing Workshop.pdf. You can find the recorded video here:
https://www.mathworks.com/videos/parallel-computing-hands-on-workshop-1594017972362.html

Zitieren als

Sam Marshalik (2024). Parallel Computing Hands-on Workshop (https://github.com/mathworks/parallel-computing-hands-on-workshop/releases/tag/v1.0), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2020a
Kompatibel mit R2016b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.