Multi-Objective Jellyfish Search (MOJS) Algorithm
This study develops a Multi-Objective Jellyfish Search (MOJS) algorithm to solve engineering problems optimally with multiple objectives. Lévy flight, elite population, fixed-size archive, chaotic map, and the opposition-based jumping method are integrated into the MOJS to obtain the Pareto optimal solutions. These techniques are employed to define the motions of jellyfish in an ocean current or a swarm in multi-objective search spaces.
Zitieren als
Chou, Jui-Sheng, and Dinh-Nhat Truong. “Multiobjective Optimization Inspired by Behavior of Jellyfish for Solving Structural Design Problems.” Chaos, Solitons & Fractals, vol. 135, Elsevier BV, June 2020, p. 109738, doi:10.1016/j.chaos.2020.109738.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0 |