Multi-Objective Jellyfish Search (MOJS) Algorithm

Version 1.0.0 (6,91 KB) von nhat truong
This study develops a Multi-Objective Jellyfish Search (MOJS) algorithm to solve engineering problems optimally with multiple objectives.
480 Downloads
Aktualisiert 18. Sep 2020

Lizenz anzeigen

This study develops a Multi-Objective Jellyfish Search (MOJS) algorithm to solve engineering problems optimally with multiple objectives. Lévy flight, elite population, fixed-size archive, chaotic map, and the opposition-based jumping method are integrated into the MOJS to obtain the Pareto optimal solutions. These techniques are employed to define the motions of jellyfish in an ocean current or a swarm in multi-objective search spaces.

Zitieren als

Chou, Jui-Sheng, and Dinh-Nhat Truong. “Multiobjective Optimization Inspired by Behavior of Jellyfish for Solving Structural Design Problems.” Chaos, Solitons & Fractals, vol. 135, Elsevier BV, June 2020, p. 109738, doi:10.1016/j.chaos.2020.109738.

Mehrere Stile anzeigen
Kompatibilität der MATLAB-Version
Erstellt mit R2016a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0