Slime Mould Algorithm (SMA): A Method for Optimization
Version 1.0.7 (3,14 MB) von
Ali Asghar Heidari
A new stochastic optimizer slime mould algorithm (SMA): https://aliasgharheidari.com/SMA.html
In this paper, a new stochastic optimizer, which is called slime mould algorithm (SMA), is proposed based on the oscillation mode of slime mould in nature. The proposed SMA has several new features with a unique mathematical model that uses adaptive weights to simulate the process of producing positive and negative feedback of the propagation wave of slime mould based on bio-oscillator to form the optimal path for connecting food with excellent exploratory ability and exploitation propensity. The proposed SMA is compared with up-to-date metaheuristics using an extensive set of benchmarks to verify its efficiency. Moreover, four classical engineering problems are utilized to estimate the efficacy of the algorithm in optimizing constrained problems. The results demonstrate that the proposed SMA benefits from competitive, often outstanding performance on different search landscapes. The source codes of SMA are publicly available at http://www.alimirjalili.com/SMA.html and https://tinyurl.com/Slime-mould-algorithm.
Main paper: Slime mould algorithm: A new method for stochastic optimization
Shimin Li Huiling Chen Mingjing Wang Ali Asghar Heidari Seyedali Mirjalili
Future Generation Computer Systems Volume 111, October 2020, Pages 300-323
More information, source code, and related supplementary materials such as Latex files and Visio files for figures of the original paper can be found in:
(a) https://www.researchgate.net/profile/Ali_Asghar_Heidari
(b) https://aliasgharheidari.com/SMA.html
(c) https://github.com/aliasghar68/Slime-Mould-Algorithm-A-New-Method-for-Stochastic-Optimization-
e-Mail: aliasghar68@gmail.com, as_heidari@ut.ac.ir
(singapore) aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
Homepage: https://www.researchgate.net/profile/Ali_Asghar_Heidari
Zitieren als
Li, Shimin, et al. “Slime Mould Algorithm: A New Method for Stochastic Optimization.” Future Generation Computer Systems, vol. 111, Elsevier BV, Oct. 2020, pp. 300–23, doi:10.1016/j.future.2020.03.055.
Kompatibilität der MATLAB-Version
Erstellt mit
R2019b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert: Komodo Mlipir Algorithm, Adaptive Opposition Slime Mould Algorithm (AOSMA), Leader Slime Mould Algorithm, Equilibrium Slime Mould Algorithm (ESMA) Source Code
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Artemisinin Optimizer (AO)-2024
Educational Competition Optimizer (ECO)-2024
Fata Morgana Algorithm (FATA)-2024
Harris Hawk Optimization (HHO)-2019
Hunger Games Search (HGS)-2021
Moss Growth Optimization (MGO)-2024
Parrot Optimizer (PO)-2024
Polar Lights Optimizer (PLO)-2024
Rime Optimization Algorithm (RIME)-2023/RIME Iteration version
Rime Optimization Algorithm (RIME)-2023/RIME function evaluation version
Runge Kutta Optimization (RUN)-2021
Slime mould algorithm (SMA)-2020
Weighted Mean of Vectors (INFO)-2022
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.7 | 2024 |
||
1.0.6 | . |
||
1.0.5 | abstract updated |
||
1.0.4 | website updated |
||
1.0.3 | v 1. 3 |
||
1.0.2 | Version 01 |
||
1.0.1 | Version 1 |
||
1.0.0 |