Iterative Eigenvalue Estimation using Cholesky Decomposition

The package presents a low-complexity algorithm for iterative eigenvalue estimation using Cholesky decomposition with permutations.
61 Downloads
Aktualisiert 5. Nov 2019

Lizenz anzeigen

Iterative Eigenvalue Estimation using Cholesky Decomposition with Permutation

The proposed algorithm achieves a moderate convergence performance, comparable to the classical QR iterations (with permutations) [1], at a lower computational cost. It uses a combination of the low-complexity (N^3/6 per step) Cholesky iterations [2] together with matrix permutation based on the diagonal values. The algorithm works for positive definite matrices and can be extended to work on positive-semi definite, symmetric, and arbitrary matrices using methods described in [1] and [2].

References:
[1] Symmetric QR Algorithm with Permutations, arXiv:1402.5086.
[2] Singular Values using Cholesky Decomposition, arXiv:1202.1490.

Package: This package demonstrates the proposed algorithm.
Run instructions: Run test_choliter.m
Example output: test_choliter.fig or test_choliter.png

Zitieren als

Aravindh Krishnamoorthy (2026). Iterative Eigenvalue Estimation using Cholesky Decomposition (https://de.mathworks.com/matlabcentral/fileexchange/73255-iterative-eigenvalue-estimation-using-cholesky-decomposition), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2019b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Eigenvalues & Eigenvectors finden Sie in Help Center und MATLAB Answers
Tags Tags hinzufügen
Version Veröffentlicht Versionshinweise
1.0.0