Shor Algorithm for prime factoring
A Version of the Shor-Algorithm for prime Factoring. Please feel free to comment on it or recommend improvements.
Performance is pretty poor, since creating the "superposition" required for the analysis of hidden frequencies is quite intensive (and I do not have a quantum computer). This step consumes about 99% of the total runtime.
Performance tests produced similar results as I found in: https://scholar.colorado.edu/math_gradetds/39/ (Parsons, Elizabeth Ellen, "Simulation of a Quantum Prime Factoring Algorithm" (2016), p. 42.)
The program can also handle numbers with factors of the kind p^n with p = a prime and n>1. (not all versions of Shor I found, could do this)
Using a "parfor" inside the "order_qstyle" function would help to speed it up a bit.
Example(s):
shor(156) delivers : 2 2 3 13 in 0.060103 seconds
shor(793) delivers: 13 61 in 287.038115 seconds
shor(1185) delivers: 3 5 79 in 80.203060 seconds
(on my computer)
Zitieren als
Thomas (2026). Shor Algorithm for prime factoring (https://de.mathworks.com/matlabcentral/fileexchange/72945-shor-algorithm-for-prime-factoring), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- MATLAB > Data Import and Analysis > Large Files and Big Data >
- Sciences > Physics > Quantum Mechanics >
- Sciences > Chemistry > Quantum Computing >
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0 |
