SDO (Sparse Data Observers)
SDO is an algorithm that scores data samples with estimations of distance-based outlierness. Alike other outlier detection algorithms, SDO is an eager learner that creates a low-density model of the dataset during a training phase and later compares new samples with the created model. Such scheme allows lightening the computational load during application phases, not requiring to recall old data samples again.
SDO is devised to be embedded in systems or frameworks that operate autonomously and must process large amounts of data in a continuos manner. SDO is a machine learning solution for Big Data and stream data applications.
Zitieren als
Felix Iglesias (2026). SDO (Sparse Data Observers) (https://github.com/CN-TU/sdo-matlab), GitHub. Abgerufen.
F. Iglesias, T. Zseby, A. Zimek. Outlier Detection Based on Low Density Models. Proc. IEEE International Conference on Data Mining Workshops, ICDM Workshops, Singapore; 11-17-2018 – 11-20-2018. pp. 970 – 979.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0 |
|
