SDO (Sparse Data Observers)

Outlier detection based on low density models
63 Downloads
Aktualisiert 28. Jun 2019

SDO is an algorithm that scores data samples with estimations of distance-based outlierness. Alike other outlier detection algorithms, SDO is an eager learner that creates a low-density model of the dataset during a training phase and later compares new samples with the created model. Such scheme allows lightening the computational load during application phases, not requiring to recall old data samples again.

SDO is devised to be embedded in systems or frameworks that operate autonomously and must process large amounts of data in a continuos manner. SDO is a machine learning solution for Big Data and stream data applications.

Zitieren als

Felix Iglesias (2026). SDO (Sparse Data Observers) (https://github.com/CN-TU/sdo-matlab), GitHub. Abgerufen.

F. Iglesias, T. Zseby, A. Zimek. Outlier Detection Based on Low Density Models. Proc. IEEE International Conference on Data Mining Workshops, ICDM Workshops, Singapore; 11-17-2018 – 11-20-2018. pp. 970 – 979.

Kompatibilität der MATLAB-Version
Erstellt mit R2019a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.