k-means clustering

The following is an implementation of the k-means algorithm for educational purpose. This algorithm is widely known in the signal processing
1,3K Downloads
Aktualisiert 9. Jun 2019

Lizenz anzeigen

The aim of the algorithm is to cluster n points (samples or observations) into k groups in which each point belongs to the cluster with the nearest mean. This process continues until there is no change in the clusters or the algorithm has reached the limit of iteration.
The algorithm has 3 values of interest: the number of points, k (number of clusters) and the number of iterations.
The code was designed in a way you can watch the movement of the cluster at each iteration.
If you are facing any trouble you can contact me by email.
my email is: orramirezba@ittepic.edu.mx

Zitieren als

Orlando Ramirez Barron (2026). k-means clustering (https://de.mathworks.com/matlabcentral/fileexchange/71796-k-means-clustering), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers
Version Veröffentlicht Versionshinweise
1.0.0