Simple Deep Learning Algorithms with K-fold Cross-Validation

Version 1.1 (4,28 KB) von Jingwei Too
This toolbox offers convolution neural networks (CNN) using k-fold cross-validation, which are simple and easy to implement.
3,3K Downloads
Aktualisiert 20. Dez 2020

Jx-DLT : Deep Learning Toolbox

* This toolbox contains the convolution neural network (CNN)

* The < Main.m file > shows examples of how to use CNN programs with the benchmark data set. Note we demo the CNN using one to three convolution layers setup.

* Detail of this toolbox can be found at https://github.com/JingweiToo/Deep-Learning-Toolbox

**********************************************************************************************************************************

Zitieren als

Too, Jingwei, et al. “Featureless EMG Pattern Recognition Based on Convolutional Neural Network.” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, Institute of Advanced Engineering and Science, June 2019, p. 1291, doi:10.11591/ijeecs.v14.i3.pp1291-1297.

Kompatibilität der MATLAB-Version
Erstellt mit R2018a
Kompatibel mit R2017b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.1

See release notes for this release on GitHub: https://github.com/JingweiToo/Deep-Learning-Toolbox/releases/tag/1.1

1.0.2

-

1.0.1

-

1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.