Data Science: Predict Damage Costs of Weather Events

Explore data and use machine learning to predict the damage costs of storm events based on location, time of year, and type of event
2,9K Downloads
Aktualisiert 21. Mai 2021
The goal of this case study is to explore storm events in various locations in the United States and analyze the frequency and damage costs associated with different types of events. A machine learning model is used to predict the damage costs, based on historical data from 1980 - 2020. The calculations are then performed in an app, which can be shared as a web application.
This example also highlights techniques for cleaning data in various forms (numeric, text, categorical, dates and times) and working with large data sets which do not fit into memory.
The example is used in the "Data Science with MATLAB" webinar series.

Zitieren als

Heather Gorr, PhD (2024). Data Science: Predict Damage Costs of Weather Events (https://github.com/mathworks/data-science-predict-weather-events), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2019a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Weather and Atmospheric Science finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.4

Included examples for Intro to MATLAB webinar

1.0.3

Link to GitHub

1.0.2

Included recent data, updated scripts to include Live Editor Tasks for data cleaning (available in R2019b)

1.0.1

Updated for Data Science w/ MATLAB webinar

1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.