TimeTabling-GeneticAlgorithm

A genetic Algorithm Solution for Weekly Course Timetabling Problem
385 Downloads
Aktualisiert 19. Sep 2018

Genetic Algorithms are the method for finding enough good solutions for the problems which cannot be solved by a standard method named NP-Hard problems. Although it does not guaranty the best solution, we can find relatively enough good solutions for most engineering problems within that method [1].

Educational institutes such as high schools universities use weekly course timetabling to use all sources in an optimum way. To make an optimum weekly timetable is such an example of NP-Hard problem which cannot be solved in any brutal force method which checks every single probability.

In this repository, we provided a solution to that problem using Genetic Algorithm which tries to minimize determined fitness function which that function is a sort of measurement of how the timetable is optimum [2].

Zitieren als

muhammet balcilar (2026). TimeTabling-GeneticAlgorithm (https://github.com/balcilar/TimeTabling-GeneticAlgorithm), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.