Wind field simulation (the fast version)

version 1.8 (9.17 MB) by E. Cheynet
A three-variate spatially correlated turbulent wind field is simulated in three dimensions.


Updated 28 Nov 2022

From GitHub

View License on GitHub


A three-variate turbulent wind field (u,v and w components) is simulated in three-dimensions.

View Wind field simulation (the fast version) on File Exchange


A turbulent wind field (u,v,w, components) in 3-D (two dimensions for space and one for the time) is simulated using random processes. The computational efficiency of the simulation relies on Ref. [1], which leads to a significantly shorter simulation time than the function windSim, also available on fileExchange. However, only the case of a regular 2D vertical grid normal to the flow is here considered.


The submission contains:

  • An example file Example1 that illustrates simply how the output variables look like.
  • An example file Example2, which is more complete, and which simulates a 3-D turbulent wind field on a 7x7 grid.
  • A data file exampleData.mat used in Example1.
  • The function windSimFast.m, which is used to generate the turbulent wind field. A similar implementation of windSimFast.m was used in ref. [2].
  • The function getSamplingpara.m, which computes the time and frequency vectors.
  • The function KaimalModel.m, which generates the one-point auto and cross-spectral densities of the velocity fluctuations, following the Kaimal model [3]. I have corrected the cross-spectrum density formula used by Kaimal et al. so that the simulated friction velocity is equal to the target one.
  • The function coherence used to estimate the root-mean-square coherence, the co-coherence and the quad-coherence.
  • The function write2bts to convert the data into a .bts file (binary data). This function is still under testing and I ignore if it performs well.

Any comment, suggestion or question is welcomed.


[1] Shinozuka, M., & Deodatis, G. (1991). Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, 44(4), 191-204.

[2] Wang, J., Cheynet, E., Snæbjörnsson, J. Þ., & Jakobsen, J. B. (2018). Coupled aerodynamic and hydrodynamic response of a long span bridge suspended from floating towers. Journal of Wind Engineering and Industrial Aerodynamics, 177, 19-31.

[3] Davenport, A. G. (1961). The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society, 87(372), 194-211.

Cite As

Cheynet, E. Wind Field Simulation (the Fast Version). Zenodo, 2020, doi:10.5281/ZENODO.3774136.

View more styles
MATLAB Release Compatibility
Created with R2019b
Compatible with R2012b and later releases
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.