Deploying shallow Neural Networks on low power ARM Cortex M

Deploying a trained network in limited precision on an ARM microcontroller such as Arduino Uno
205 Downloads
Aktualisiert 16. Jul 2018

Lizenz anzeigen

In this example we illustrate a MATLAB and Simulink workflow on how to train and deploy a machine learning model to a low-power microcontroller on the edge. We demonstrate how to train a shallow neural network for a regression problem, how to generate readable single precision floating point or Fixed-point code and how to deploy to an ARM cortex M microcontroller such as an Arduino Uno.
We use the engine dataset for estimating engine emission levels based on measurements of fuel consumption and speed. This is a regression problem and we use a shallow neural network to model the system.
The download contains the example dataset, the trained model exported as a MATLAB function and an equivalent Simulink model and a detailed article explaining the workflow steps. It also contains all the required scripts to automate some of the tasks.

Zitieren als

MathWorks Fixed Point Team (2024). Deploying shallow Neural Networks on low power ARM Cortex M (https://www.mathworks.com/matlabcentral/fileexchange/67799-deploying-shallow-neural-networks-on-low-power-arm-cortex-m), MATLAB Central File Exchange. Abgerufen .

Kompatibilität der MATLAB-Version
Erstellt mit R2018a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Recognition, Object Detection, and Semantic Segmentation finden Sie in Help Center und MATLAB Answers
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.1

Updated the readme.txt

1.0.0.0