Multi-objective optimization algorithm for expensive-to-evaluate function

Thompson sampling efficient multiobjective optimization (TSEMO) algorithm
1,9K Downloads
Aktualisiert 19. Jun 2020

This repository contains the source code for “Thompson sampling efficient multiobjective optimization” (TSEMO) algorithm [1].
The algorithm is designed for global multi-objective optimization of expensive-to-evaluate black-box functions. For example, the algorithm has been applied to the simultaneous optimization of the life-cycle assessment (LCA) and cost of a chemical process simulation [2]. However, the algorithm can be applied to other black-box function such as CFD simulations as well. It is based on the Bayesian optimization approach that builds Gaussian process surrogate models to accelerate optimization. Further, the algorithm can identify several promising points in each iteration (batch sequential mode). This allows to evaluate several simulations in parallel.
[1] Bradford, E., Schweidtmann, A.M. & Lapkin, A. J Glob Optim (2018). https://doi.org/10.1007/s10898-018-0609-2
[2] D. Helmdach, P. Yaseneva, P. K. Heer, A. M. Schweidtmann, A. A. Lapkin, ChemSusChem 2017, 10, 3632. https://doi.org/10.1002/cssc.201700927

Zitieren als

Artur Schweidtmann (2026). Multi-objective optimization algorithm for expensive-to-evaluate function (https://github.com/Eric-Bradford/TS-EMO), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2018a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0.0

added DOI of paper

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.