Multi-objective optimization algorithm for expensive-to-evaluate function
This repository contains the source code for “Thompson sampling efficient multiobjective optimization” (TSEMO) algorithm [1].
The algorithm is designed for global multi-objective optimization of expensive-to-evaluate black-box functions. For example, the algorithm has been applied to the simultaneous optimization of the life-cycle assessment (LCA) and cost of a chemical process simulation [2]. However, the algorithm can be applied to other black-box function such as CFD simulations as well. It is based on the Bayesian optimization approach that builds Gaussian process surrogate models to accelerate optimization. Further, the algorithm can identify several promising points in each iteration (batch sequential mode). This allows to evaluate several simulations in parallel.
[1] Bradford, E., Schweidtmann, A.M. & Lapkin, A. J Glob Optim (2018). https://doi.org/10.1007/s10898-018-0609-2
[2] D. Helmdach, P. Yaseneva, P. K. Heer, A. M. Schweidtmann, A. A. Lapkin, ChemSusChem 2017, 10, 3632. https://doi.org/10.1002/cssc.201700927
Zitieren als
Artur Schweidtmann (2026). Multi-objective optimization algorithm for expensive-to-evaluate function (https://github.com/Eric-Bradford/TS-EMO), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Mathematics and Optimization > Global Optimization Toolbox > Multiobjective Optimization >
- Engineering > Chemical Engineering > Chemical Process Design >
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Direct
Mex_files/hypervolume
Mex_files/invchol
Mex_files/pareto front
NGPM_v1.4
Old_versions
Test_functions
Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0.0 | added DOI of paper |
|
