Expectation Maximization Algorithm
This submission implements the Expectation Maximization algorithm and tests it on a simple 2D dataset.
The Expectation–Maximization (EM) algorithm is an iterative method to find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.
Github Repository:
https://github.com/rezaahmadzadeh/Expectation-Maximization
Zitieren als
Reza Ahmadzadeh (2026). Expectation Maximization Algorithm (https://de.mathworks.com/matlabcentral/fileexchange/65772-expectation-maximization-algorithm), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.2.0.0 | added url for github repository |
||
| 1.1.0.0 | Added picture |
||
| 1.0.0.0 |
