Fixed-Point Made Easy for FPGA Programming
One of the biggest challenges in FPGA programming is the process of quantizing mathematical operations to fixed-point for more efficient implementation.
This session teaches the fundamentals of the fixed-point number system and fixed-point arithmetic, along with considerations for targeting popular FPGA devices. These concepts are then reinforced through practical demonstrations, capped by walking through the process of quantizing a signal processing design.
Topics include:
Fixed-point theory
Fixed-point number system
Mathematical range
Quantization error in the time and frequency domains
Common functions
Arithmetic: square root, reciprocal, log2
Trigonometry: cosine, sine, atan2
Signal processing: FIR, FFT
FPGA considerations
Targeting Xilinx and Intel devices
Maintaining precision
Using native floating point for full-precision calculations
Example: communications packet detection
Matched filter
Peak detection
FPGA optimizations
Zitieren als
MathWorks Fixed Point Team (2026). Fixed-Point Made Easy for FPGA Programming (https://de.mathworks.com/matlabcentral/fileexchange/64495-fixed-point-made-easy-for-fpga-programming), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Fixed_point_DSP_FPGA_webinar
Fixed_point_DSP_FPGA_webinar
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 2.0.0.0 | Updated the material used in the webinar. |
||
| 1.0.0.0 | Added copyright notices. |
