micompm

Multivariate independent comparison of observations
106 Downloads
Aktualisiert 27. Aug 2019

micompm is a MATLAB/Octave port of the original micompr R package for comparing multivariate samples associated with different groups. It uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. This technique is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. The procedure is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations. It is aimed at researchers from all fields of science, although it requires some knowledge on design of experiments, statistical testing and multidimensional data analysis.

Reference:

Fachada N, Rosa AC. (2018) micompm: A MATLAB/Octave toolbox for multivariate independent comparison of observations. Journal of Open Source Software. 3(23):430. https://doi.org/10.21105/joss.00430

Zitieren als

Fachada N, Rosa AC. (2018) micompm: A MATLAB/Octave toolbox for multivariate independent comparison of observations. Journal of Open Source Software. 3(23):430. https://doi.org/10.21105/joss.00430

Kompatibilität der MATLAB-Version
Erstellt mit R2013a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Industrial Statistics finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.2.1

Add paper reference

1.0.2.0

- Documentation updates

1.0.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.