AdaBoost

Version 1.0.0.0 (227 KB) von Bhartendu
AdaBoost, Weak classifiers: GDA, Knn, Naive Bayes, Linear, SVM
1,4K Downloads
Aktualisiert 28. Mai 2017

Lizenz anzeigen

AdaBoost Demo, with various Weak classifiers:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.

::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
5. SVM ('KernelFunction: rbf')

Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents:
1. Initialization (Dataset:: NoisyData.csv)
2. Gaussian Discriminant Analysis Classification
3. Knn Classification
4. Naive Bayes Classification
5. Logistic Regression
6. SVM (rbf) Classification
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic, SVM) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7. Conclusions

Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine

2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels

3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification

4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-

5. AdaBoost+ PCA
https://in.mathworks.com/matlabcentral/fileexchange/63161-adaboost--pca--capstone-project-

Zitieren als

Bhartendu (2024). AdaBoost (https://www.mathworks.com/matlabcentral/fileexchange/63162-adaboost), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2015a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Classification finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0