AdaBoost, PCA (Capstone Project)

Version 1.0.0.0 (3,95 MB) von Bhartendu
Capstone Project: PCA & AdaBoost concepts are applied to 'Car Detection' from images
564 Downloads
Aktualisiert 28. Mai 2017

Lizenz anzeigen

Dataset: UIUC Image Database for Car Detection ( https://cogcomp.cs.illinois.edu/Data/Car/ )
PCA
(a) Finding the best k, where k is the dimension of the optimal subspace to which the data is projected.
(b) Suitable classification algorithm on new data and various performance measure.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| AdaBoost : Implemented in 2-dimensional projection space. (i.e.Number of Pricipal Components = 2) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.

::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents

Initialization, Dataset : *'CarPixels.csv'* :: Generated from: UIUC Image Database for Car Detection
Sample Images (Random)
Applying PCA
Performance Measure & Optimal number of Principal Components (K)
Explaind-Variance Curve
Performace Measure
Reconstruction of Images

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Applying AdaBoost
Initialization (2-dimension)
Gaussian Discriminant Analysis Classification
Knn Classification
Naive Bayes Classification
Logistic Regression
Conclusions

Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine

2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels

3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification

4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-

Zitieren als

Bhartendu (2024). AdaBoost, PCA (Capstone Project) (https://www.mathworks.com/matlabcentral/fileexchange/63161-adaboost-pca-capstone-project), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2015a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0