AdaBoost, PCA (Capstone Project)
Dataset: UIUC Image Database for Car Detection ( https://cogcomp.cs.illinois.edu/Data/Car/ )
PCA
(a) Finding the best k, where k is the dimension of the optimal subspace to which the data is projected.
(b) Suitable classification algorithm on new data and various performance measure.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| AdaBoost : Implemented in 2-dimensional projection space. (i.e.Number of Pricipal Components = 2) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.
::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents
Initialization, Dataset : *'CarPixels.csv'* :: Generated from: UIUC Image Database for Car Detection
Sample Images (Random)
Applying PCA
Performance Measure & Optimal number of Principal Components (K)
Explaind-Variance Curve
Performace Measure
Reconstruction of Images
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Applying AdaBoost
Initialization (2-dimension)
Gaussian Discriminant Analysis Classification
Knn Classification
Naive Bayes Classification
Logistic Regression
Conclusions
Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine
2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels
3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification
4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-
Zitieren als
Bhartendu (2024). AdaBoost, PCA (Capstone Project) (https://www.mathworks.com/matlabcentral/fileexchange/63161-adaboost-pca-capstone-project), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0.0 |