Kernel PCA

Version 1.0.0.0 (164 KB) von Bhartendu
Kernel PCA analysis with Kernel ridge regression & SVM regression
1K Downloads
Aktualisiert 26. Mai 2017

Lizenz anzeigen

Refer to 6.2.1 KPCA, Kernel Methods for Pattern Analysis, John Shawe-Taylor University of Southampton, Nello Cristianini University of California at Davis
Refer to 6.2.2 Kernel Ridge Regression, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Nello Cristianini and John Shawe-Taylor

Kernel PCA:
Kernel PCA is the application of PCA in a kernel-defined feature space making use of the dual representation.
http://pca.narod.ru/scholkopf_kernel.pdf

Reference: (for SVR) https://in.mathworks.com/matlabcentral/fileexchange/63060-support-vector-regression Reference: (for Ridge regression)https://in.mathworks.com/matlabcentral/fileexchange/63122-kernel-ridge-regression

Zitieren als

Bhartendu (2026). Kernel PCA (https://de.mathworks.com/matlabcentral/fileexchange/63130-kernel-pca), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und MATLAB Answers
Version Veröffentlicht Versionshinweise
1.0.0.0