Delta Learning, Widrow Hoff Learning

Version 1.0.0.0 (57,5 KB) von Bhartendu
Delta Learning rule, Widrow-Hoff Learning rule (Artificial Neural Networks)
348 Downloads
Aktualisiert 22. Mai 2017

Lizenz anzeigen

When comparing with the network output with desired output, if there is error the weight vector w(k) associated with the ith processing unit at the time instant k is corrected (adjusted) as
w(k+1) = w(k) + D[w(k)]
where, D[w(k)] is the change in the weight vector and will be explicitly given for various learning rules.
Delta Learning rule is given by:
w(k+1) = w(k) + eta*[ d(k) - f{ w'(k)*x(k) } ] *f'{ w'(k)*x(k) } *x(k)

Widrow-Hoff Learning rule is given by:

w(k+1) = w(k) + eta*[ d(k) - w'(k)*x(k) ] *x(k)
here: f{ w'(k)*x(k) } = w'(k)*x(k)

Reference:
http://www.ent.mrt.ac.lk/~ekulasek/ami/PartC.pdf

Zitieren als

Bhartendu (2024). Delta Learning, Widrow Hoff Learning (https://www.mathworks.com/matlabcentral/fileexchange/63050-delta-learning-widrow-hoff-learning), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0