Lorenz Attractor

Simulation of dynamic behaviours of the legendary Lorenz's chaotic system.
382 Downloads
Aktualisiert 5. Jan 2020

Lizenz anzeigen

Dynamic systems are physical system that the evolution is time depending. Chaotic systems are the category of these systems, which are characterized by the high sensitivity to initial conditions. There are have several technological applications of such systems. The most famous chaotic system of all time is certainly the Lorenz system. Here we present the dynamics of the Lorenz system and demonstrate its sensitivity to the initial conditions.

Zitieren als

KAMDEM K. Paul Didier (2026). Lorenz Attractor (https://de.mathworks.com/matlabcentral/fileexchange/62740-lorenz-attractor), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2009a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und MATLAB Answers
Version Veröffentlicht Versionshinweise
1.2.0.2

Comments added

1.2.0.1

file comments updated

1.2.0.0

The summary has been corrected

1.1.0.0

The description and the name has been improved

1.0.0.0