ANP: Animated Nyquist Plot
Programmed for educational purposes, this Matlab function draws a Nyquist diagram of any given rational transfer function (including delays) and allows the user to explore it.
As the radius of the D-contour is held relatively small, one can investigate what happens at the origin.
The program also displays the contribution of each pole / zero to the current magnitude and phase.
ANP is capable of handling:
- Vectors with zeros and poles for a SISO system: anp_main([0],[-1,-2,-3+1i,-3-1i])
- SISO rational transfer functions: anp_main(tf(rss(1,1,1)));
- SISO systems with delay: s=tf('s'); anp_main(1/(s+1)*exp(-0.01*s)));
- MIMO systems (computing det(I + L(s)) for a MIMO transfer function L(s)): anp_main(tf(rss(2,2,2)));
Have a look at the file 'anp_usage_examples.m' to see other syntax examples.
Please report any glitches and crashes!
Zitieren als
Stefan Rickli (2024). ANP: Animated Nyquist Plot (https://github.com/StefanRickli/anp), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Control Systems > Control System Toolbox > Linear Analysis > Stability Analysis > Pole and Zero Locations >
Tags
Quellenangaben
Inspiriert von: GUI for Understanding Nyquist Plots
Inspiriert: Plot Nyquist Didactic
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
anp_files
anp_files/@anp_gui
anp_files/@d_contour
anp_files/@tf_processor
anp_files/d_contour_tiny_fcts
anp_files/mimo
anp_files/naclab_min
anp_files/tools
unit_tests
Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
6.0.1.0 | Bugfix:
|
|
|
6.0.0.0 | New: MIMO support: try anp_main(tf(rss(2,2,2)));
|
|
|
5.2.4.0 | Fixed some crashes and glitches.
A future major version will change how the detours around poles and zeros on the imaginary axis behave. This is to reflect specialities with MIMO systems. |
|
|
5.2.3.0 | Fixed initialization of variables that are used only in some rare cases. |
|
|
5.2.2.0 | Bugfix (wrong handling of nonconjugate complex poles/zeros), code cleanup, speedups, more code documentation.
|
|
|
5.2.1.0 |
|