File Exchange

image thumbnail

Root of functions by Bisection method

version 1.0.0.0 (1.17 KB) by carolina franco
It obtains the root of a function

2 Downloads

Updated 01 Feb 2017

View License

clc, clear, close all
% f is the function to be used
disp('Obtening the root of the function Y=X^3-2');
ao= input('Enter the first possible limit: ');
bo= input('Enter the second possible limit: ');
Y1=f(ao);
Y2=f(bo);
Uo=(ao+bo)/2;
Yo=f(Uo);
zo=Y1*Y2;
iter=0;
tic()
while abs(Yo)>0.0001
iter=iter+1;
if zo>0
if abs(Y1)> abs(Y2)
Uo=bo;
else
Uo=ao;
end
Yo=f(Uo);
Y2=Yo;
if Y2<0
U1= Uo+abs(Uo)*100*rand(1);
Y1=f(U1);
else
U1= Uo-abs(Uo)*100*rand(1);
Y1=f(U1);
end
zo=Y1*Y2;
U=(U1+Uo)/2;
Yo=f(U);
else

if abs(Y1)> abs(Y2)
ao=bo;
else
end
Uo=(ao+Uo)/2;
ao=Uo;
Yo=f(Uo);
Y2=f(Uo);
Y1=Yo;
zo=Y1*Y2;
Uo=(ao+Uo)/2;
end
end
y=toc;
disp(['The root of the function Y=X^3-2 is approximately: ', num2str(U,6)]);
disp(['Checking the Y value: ', num2str(Yo,6)]);
disp(['The number of iteration was: ', num2str(iter)]);
disp(['Duration of the process: ', num2str(y)]);
% f function from here

function y=f(a)
y=a.^3-2;
end

Cite As

carolina franco (2020). Root of functions by Bisection method (https://www.mathworks.com/matlabcentral/fileexchange/61385-root-of-functions-by-bisection-method), MATLAB Central File Exchange. Retrieved .

Comments and Ratings (0)

MATLAB Release Compatibility
Created with R2015a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!