Runge-Kutta-Fehlberg (RKF78)

Fehlberg's 7th and 8th Order Embedded Method
993 Downloads
Aktualisiert 21. Nov 2024

Lizenz anzeigen

The Runge-Kutta-Fehlberg method is an adaptive procedure for approximating the solution of the differential equation y'(x) = f(x,y) with initial condition y(x0) = c. This implementation evaluates f(x,y) thirteen times per step using embedded seventh order and eight order Runge-Kutta estimates to estimate the not only the solution but also the error.
The next step size is then calculated using the preassigned tolerance and error estimate.
For step i+1,
y[i+1] = y[i] + h * (41/840 * k1 + 34/105 * k6 + 9/35 * k7 + 9/35 * k8 + 9/280 * k9 + 9/280 k10 + 41/840 k11 )
where
k1 = f( x[i],y[i] ),
k2 = f( x[i]+2h/27, y[i] + 2h*k1/27),
k3 = f( x[i]+h/9, y[i]+h/36*( k1 + 3 k2) ),
k4 = f( x[i]+h/6, y[i]+h/24*( k1 + 3 k3) ),
k5 = f( x[i]+5h/12, y[i]+h/48*(20 k1 - 75 k3 + 75 k4)),
k6 = f( x[i]+h/2, y[i]+h/20*( k1 + 5 k4 + 4 k5 ) ),
k7 = f( x[i]+5h/6, y[i]+h/108*( -25 k1 + 125 k4 - 260 k5 + 250 k6 ) ),
k8 = f( x[i]+h/6, y[i]+h*( 31/300 k1 + 61/225 k5 - 2/9 k6 + 13/900 K7) )
k9 = f( x[i]+2h/3, y[i]+h*( 2 k1 - 53/6 k4 + 704/45 k5 - 107/9 k6 + 67/90 k7 + 3 k8) ),
k10 = f( x[i]+h/3, y[i]+h*( -91/108 k1 + 23/108 k4 - 976/135 k5 + 311/54 k6 - 19/60 k7 + 17/6 K8 - 1/12 k9) ),
k11 = f( x[i]+h, y[i]+h*( 2383/4100 k1 - 341/164 k4 + 4496/1025 k5 - 301/82 k6 + 2133/4100 k7 + 45/82 K8 + 45/164 k9 + 18/41 k10) ),
k12 = f( x[i], y[i]+h*( 3/205 k1 - 6/41 k6 - 3/205 k7 - 3/41 K8 + 3/41 k9 + 6/41 k10) ),
k13 = f( x[i]+h, y[i]+h*( -1777/4100 k1 - 341/164 k4 + 4496/1025 k5 - 289/82 k6 + 2193/4100 k7 + 51/82 K8 + 33/164 k9 + 12/41 k10 + k12) )
x[i+1] = x[i] + h.
The error is estimated to be err = -41/840 * h * ( k1 + k11 - k12 - k13)
The step size h is then scaled by the scale factor scale = 0.8 * | epsilon * y[i] / [err * (xmax - x[0])] | ^ 1/7
The scale factor is further constrained 0.125 < scale < 4.0.
The new step size is h := scale * h.
Reference:
J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Texts in Applied Mathematics), 3rd edition, 2002.

Zitieren als

Meysam Mahooti (2025). Runge-Kutta-Fehlberg (RKF78) (https://de.mathworks.com/matlabcentral/fileexchange/61130-runge-kutta-fehlberg-rkf78), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
2.1.1

test_Runge_Kutta_Fehlberg_7_8.m was modified.

2.1.0.0

test_Runge_Kutta_Fehlberg_7_8.m is modified and output.txt is added to reveal tremendous accuracy and speed of Runge-Kutta-Fehlberg (RKF78).

2.0.0.0

test_Runge_Kutta_Fehlberg_7_8.m is modified.

1.1

Title is changed.

1.0.0.0