Simple Heat Equation solver

Version 1.0.0.3 (5,51 MB) von michio
Simple Heat Equation solver using finite difference method
3,7K Downloads
Aktualisiert 18. Mär 2023

Finite differences for the 2D heat equation

Open in MATLAB Online View Simple Heat Equation solver on File Exchange

Implementation of a simple numerical schemes for the heat equation.

Applying the second-order centered differences to approximate the spatial derivatives,

Neumann boundary condition is employed for no-heat flux, thus please note that the grid location is staggered. Once the right hand side is obtained, the equation can be solved by the ODE suite. Here we use ode15s. Copyright 2015-2016 The MathWorks, Inc.

image_0.png

Problem Setup

N = 50; % Number of grid in x,y-direction
L = 4*pi; % Domain size

% Grid point
x = linspace(0,L,N);
y = linspace(0,L,N);
% Make it staggered.
x = (x(1:end-1)+x(2:end))/2;
y = (y(1:end-1)+y(2:end))/2;
[X,Y] = meshgrid(x,y);

Initial Condition

% Let's use MATLAB logo.
% A variable u0 is defined at the center of each grid cell
% thus the number of grid point is N-1.
u0(:,:) = peaks(N-1);

% Plot it
handle_surf = surf(X,Y,u0);
handle_axes = gca;
handle_axes.ZLim = [-10,10];
handle_axes.CLim = [-10,10];
title('Evolution of MATLAB Logo by Heat equation');

figure_0.png

Simulation

dx = x(2)-x(1); % spatial grid size
alpha = 2; % coefficient
tspan = linspace(0,1,40);
[t,u] = ode15s(@(t,x)getRHS(x,alpha,dx,N),tspan,u0(:));

Visualize

Tn = length(t);
u = reshape(u,Tn,N-1,N-1);

filename = 'heat.gif';
for ii=1:Tn
    Z = u(ii,:,:);
    Z = squeeze(Z);
    handle_surf.ZData = Z;
    drawnow;
    frame = getframe(gcf);
    im = frame2im(frame);
    [A,map] = rgb2ind(im,256);
    if ii==1
        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',0.05);
    else
        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',0.05);
    end
end

figure_1.png

Copyright 2015-2016 The MathWorks, Inc. View Simple Heat Equation solver on File Exchange

Zitieren als

michio (2024). Simple Heat Equation solver (https://github.com/mathworks/Simple-Heat-Equation-solver), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0.3

reflect markdown on File Exchange

1.0.0.2

Move to GitHub

1.0.0.1

Added a screenshot

1.0.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.