The convergence process in the bisection method is very slow. It depends only on the choice of end points of the interval [a,b]. The function f(x) does not have any role in finding the point c (which is just the mid-point of a and b). It is used only to decide the next smaller interval [a,c] or [c,b]. A better approximation to c can be obtained by taking the straight line L joining the points (a,f(a)) and (b,f(b)) intersecting the x-axis.
the above function has two roots in between -1 to 1 and in between -1 to -2.
for 1st root we assign a=-1 ; b=1; and for 2nd root we assign a=-1; b=-2.
lets evaluate the -ve root .
for bisection method please refer previous uploaded bisection method
% bisection vs regula falsi method
clear all
clc
x=-3:0.001:3;
y=cos(x)-x.*exp(x);
plot(x,y)
grid on
%%
a=-1;
b=-2;
tol=0.01;
myfun=inline('cos(x)-x.*exp(x)');
z=Regulafalsi(myfun,a,b,tol);
z=bisection(myfun,a,b,tol);
output :
iter a C b fa fb fc error=abs(a-c)
-------------------------------------------------------------------------------------------
0 -1.0000 -1.8619 -2.0000 0.9082 -0.1455 0.0023 0.8619
1 -1.8619 -1.8640 -2.0000 0.0023 -0.1455 -0.0000 0.0021
root = -1.864 found in 2 itterations
with approximate tolerance of 0.01
iter a c=(a+b)/2 b fa fb fc error(a-b)
-----------------------------------------------------------------------------------
0 -1.0000 -1.5000 -2.0000 0.9082 -0.1455 0.4054 1.0000
1 -1.5000 -1.7500 -2.0000 0.4054 -0.1455 0.1259 0.5000
2 -1.7500 -1.8750 -2.0000 0.1259 -0.1455 -0.0120 0.2500
3 -1.7500 -1.8125 -1.8750 0.1259 -0.0120 0.0565 0.1250
4 -1.8125 -1.8438 -1.8750 0.0565 -0.0120 0.0221 0.0625
5 -1.8438 -1.8594 -1.8750 0.0221 -0.0120 0.0050 0.0313
6 -1.8594 -1.8672 -1.8750 0.0050 -0.0120 -0.0035 0.0156
7 -1.8594 -1.8633 -1.8672 0.0050 -0.0035 0.0008 0.0078
root = -1.8633 found in 8 itterations
with approximate tolerance of 0.01
Zitieren als
N Narayan rao (2024). Regulafalsi(f,a,b,tol) (https://www.mathworks.com/matlabcentral/fileexchange/58748-regulafalsi-f-a-b-tol), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Image Processing and Computer Vision > Image Processing Toolbox > Image Filtering and Enhancement > ROI-Based Processing >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0.0 | image |