Transfer sample-based coupled task learning (TCTL)

Version 1.0.0.0 (564 KB) von Ke Yan
A multitask learning method with transfer samples
189 Downloads
Aktualisiert 19. Apr 2016

Lizenz anzeigen

Simultaneously learning two models in two domains, with the help of transfer samples (reference / corresponding / calibration samples) in both domains.
Typical application: calibration transfer of two devices, or sensor drift correction.
Linear logistic regression and ridge regression under the framework of TCTL were implemented for classification and regression.
ref: K. Yan, and D. Zhang, “Calibration transfer and drift compensation of e-noses via coupled task learning," Sens. Actuators B: Chem., vol. 225, pp. 288-297, Mar., 2016.
Copyright 2015 YAN Ke, Tsinghua Univ. http://yanke23.com, xjed09@gmail.com

Zitieren als

Ke Yan (2025). Transfer sample-based coupled task learning (TCTL) (https://www.mathworks.com/matlabcentral/fileexchange/54558-transfer-sample-based-coupled-task-learning-tctl), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2010b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0

url updated