Gaussian mixture model parameter estimation with prior hyper parameters

Version 1.0.0.0 (3,09 KB) von Rini
Gaussian mixture model using prior hyper parameters based on Expectation Maximization.
399 Downloads
Aktualisiert 31. Aug 2015

Lizenz anzeigen

There are quite a few Expectation Maximization based Gaussian mixture models. However, the models do not set any prior for mean and variance. I have implemented a 1D GMM inspired by Chris McCormick. Such a model can be helpful in cases where the data range is small and will prevent kernel overlap by restricting the kernels around the prior values.

Zitieren als

Rini (2024). Gaussian mixture model parameter estimation with prior hyper parameters (https://www.mathworks.com/matlabcentral/fileexchange/52775-gaussian-mixture-model-parameter-estimation-with-prior-hyper-parameters), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2014a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0