Dimensionality Reduction using Generalized Discriminant Analysis (GDA)

Generalized Discriminant Analysis - a non-linear feature dimensionality reduction technique
1,6K Downloads
Aktualisiert 8. Apr 2016

GDA is one of dimensionality reduction techniques, which projects a data matrix from a high-dimensional space into a low-dimensional space by maximizing the ratio of between-class scatter to within-class scatter.

More details can be found in Section 4.3 of:

M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification," Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015.
http://dx.doi.org/10.1016/j.eswa.2015.06.025

(C) Mohammad Haghighat, University of Miami
haghighat@ieee.org
PLEASE CITE THE ABOVE PAPER IF YOU USE THIS CODE.

Zitieren als

Mohammad Haghighat (2026). Dimensionality Reduction using Generalized Discriminant Analysis (GDA) (https://github.com/mhaghighat/gda), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2015a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.