ROC Curve

MATLAB function which performs a ROC curve of two-class data.
5,2K Downloads
Aktualisiert 13. Dez 2018

Lizenz anzeigen

This function calculates the Receiver Operating Characteristic curve, which represents the 1-specificity and sensitivity of two classes of data, (i.e., class_1 and class_2).

The function also returns all the needed quantitative parameters: threshold position, distance to the optimum point, sensitivity, specificity, accuracy, area under curve (AROC), positive and negative predicted values (PPV, NPV), false negative and positive rates (FNR, FPR), false discovery rate (FDR), false omission rate (FOR), F1 score, Matthews correlation coefficient (MCC), Informedness (BM) and Markedness; as well as the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Example of use:
class_1 = 0.5*randn(100,1);
class_2 = 0.5+0.5*randn(100,1);
roc_curve(class_1, class_2);

Zitieren als

Víctor Martínez-Cagigal (2024). ROC Curve (https://www.mathworks.com/matlabcentral/fileexchange/52442-roc-curve), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2014a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
3.1

All parameters are now printed in the CMD.

3.0

The function now outputs more parameters.

2.1.0.0

Classes are now indicated separately.

2.0.0.0

Different sizes in class_1 and class_2 are now allowed.

1.1.0.0

Fixed a bug in the output data.

1.0.0.0