Stabilized Gram-Schmidt Orthonormal Method

Stabilized Gram-Schmidt Orthonormal Method
2K Downloads
Aktualisiert 21. Dez 2016

Lizenz anzeigen

This is an implementation of Stabilized Gram-Schmidt Orthonormal Approach.
This algorithm receives a set of linearly independent vectors and generates a set of orthonormal vectors. For instance consider two vectors u = [2 2], v=[3 1], the output of the algorithm is e1 = [-0.3162 0.9487], e2= [0.9487 0.3162], which are two orthonormal vectors.
The input to the code is the set of vectors that should be given in a column-wise matrix. For instance, for the above-mentioned example the input would be:
V = [3 2;1 2]
and then we can run the code as
A = GramSchmidt(V)
and the result would be
A =
0.9487 -0.3162
0.3162 0.9487
This also works for k vectors (k>2) each one with n elements.
Another example is :
GramSchmidt([1 2 3;4 5 6;0 1 5;6 0 7;7 2 6])
ans =
0.0990 0.3569 0.1677
0.3961 0.7776 -0.1358
0 0.2167 0.8662
0.5941 -0.4589 0.3674
0.6931 -0.1020 -0.2612

Zitieren als

Reza Ahmadzadeh (2025). Stabilized Gram-Schmidt Orthonormal Method (https://de.mathworks.com/matlabcentral/fileexchange/51467-stabilized-gram-schmidt-orthonormal-method), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Model Predictive Control Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.2.0.0

Added a help to the test file.

1.1.0.0

A test script has been added to show the usage of the function both in 2D and 3D.

1.0.0.0