Feature selection with SVM-RFE

Version 1.3.0.0 (5,42 KB) von Ke Yan
Support vector machine recursive feature elimination (SVM-RFE), with correlation bias reduction
5,2K Downloads
Aktualisiert 13. Sep 2015

Lizenz anzeigen

SVM-RFE is a powerful feature selection algorithm in bioinformatics. It is a good choice to avoid overfitting when the number of features is high.
However, it may be biased when there are highly correlated features. We propose a "correlation bias reduction" strategy to handle it. See our paper (Yan et al., Feature selection and analysis on correlated gas sensor data with recursive feature elimination", 2015).
This file is an implementation of both our method and the original SVM-RFE, including the linear and RBF kernel. **LibSVM is needed**
Thanks to the SVM-KM and spider toolbox!

Zitieren als

Ke Yan (2025). Feature selection with SVM-RFE (https://www.mathworks.com/matlabcentral/fileexchange/50701-feature-selection-with-svm-rfe), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2010a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.3.0.0

1. remove "sv_indices" in function trainSVM older versions of libSVM don't have it
2. add a simple support for multi-class problems

1.2.0.0

fixed a bug: changed
if isempty(model) || model.nSV == 0
to
if isempty(model) || sum(model.nSV) == 0

1.1.0.0

revise description

1.0.0.0