Generalized Matrix Exponential

Solves Y'(t) = D(t)*Y(t) for Y(1) with Y(0) = I (identity matrix).
Aktualisiert 17. Jun 2015

Lizenz anzeigen

The matrix exponential Y = expm(D) is the solution of the differential equation Y'(t) = D*Y(t) at t = 1, with initial condition Y(0) = I (the identity matrix). The gexpm function generalizes this for the case of a non-constant coefficient matrix D: Y'(t) = D(t)*Y(t). gexpm handles both the constant and non-constant D cases and is equivalent to expm for constant D.
An argument option allows gexpm to compute Y = expm(X)-I without the precision loss associated with the I term. This is analogous to the MATLAB expm1 function ("exponential minus 1").
The demo_gexpm script illustrates the performance of gexpm in comparison to expm and ode45.
The algorithm is based on an order-6 Pade approximation, which is outlined in the document KJohnson_2015_04_01.pdf.

Zitieren als

Kenneth Johnson (2024). Generalized Matrix Exponential (, MATLAB Central File Exchange. Abgerufen .

Kompatibilität der MATLAB-Version
Erstellt mit R2015a
Kompatibel mit allen Versionen
Windows macOS Linux
Mehr zu Matrix Exponential finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise

Revised Description
Revised Description